Thermochemistry

Lecture Outline:

- Thermochemical equations. Thermodynamic definition of the heat of reaction.
- II. Standard state. Standard enthalpy of reaction.
- III. Hess's law.
- IV. Calculation of reaction enthalpies based on enthalpies of formation and combustion enthalpies.
- v. Experimental determination of the heat of reaction: calorimetry.
- VI. Heat capacity, types of molar heat capacities.
- VII. Temperature dependence of reaction enthalpies: Kirchhoff's law.
- VIII. The Born-Haber cycle.

I. Thermochemical equations, thermodynamic definition of the heat of reaction

- Thermochemistry: measurement or calculation of the heat
 (q) absorbed or produced in chemical reactions.
- Thermochemistry is the application of the first law.
- Thermochemical equations: in addition to the chemical change (reactants, products), it shows the reaction heat (q).
- The sign of *q* (system-centered):
 - exothermic process if heat is produced (q < 0),
 - endothermic process if heat is absorbed (q > 0).
- The heat of reaction (q):
 - at constant volume: $q_V = \Delta U$,
 - at constant pressure: $q_p = \Delta H$.

II. Standard state. Standard enthalpy of formation. Standard enthalpy change of processes.

- The absolute values of H and U are unknown and depend on the conditions.
- A reference state (general agreement) needed:
 - Standard state: The standard state of a substance at any temperature means the pure substance at pressure $p^{\theta} = 1$ bar $(1 \times 10^5 \text{ Pa})$ (definition).
 - The standard enthalpy of formation for a compound $\Delta_{\text{form}}H^{\theta}$ is the enthalpy change accompanying its formation from its elements in the standard state.
 - The standard enthalpy of formation of elements is zero: $H_{\rm m}^{\ \theta} = 0$ J/mol at any temperature!

II. Standard state. Standard enthalpy of formation. Standard enthalpy change of processes.

- Standard enthalpy change of processes ΔH^{θ} : the enthalpy change in the process in such a way that initially (*i*) the reactants are in the standard state (and not mixed) and finally (*f*) the products are in the standard state (and not mixed).
 - $\Delta H^{\theta} = H_{m,f}^{\theta} H_{m,i}^{\theta}$
 - ΔH^{θ} values are given for n = 1 mol (intensive)
 - The name of the change is given as subscript (in abbreviated form): $\Delta_{name}H^{\theta}$
- Standard enthalpies of formation and combustion are especially important reaction enthalpies, but other may be of significance, too (e.g. enthalpy of neutralization).

Name of the process	Essence of the process	Symbol
Phase transition	α -phase $\rightarrow \beta$ -phase	$\Delta_{trs} H$
Melting	$s \rightarrow I$	$\Delta_{fus}H$
Evaporation	$l \rightarrow g$	$\Delta_{vap} H$
Sublimation	$s \rightarrow g$	$\Delta_{sub}H$
Mixing of liquids	pure substances → mixture	$\Delta_{\text{mix}}H$
Solution	pure solute → solution	$\Delta_{sol} H$
Hydration	$X^{\pm}(g) \rightarrow X^{\pm}(aq)$	$\Delta_{hyd} H$
Atomization	$(s,l,g) \rightarrow atoms(g)$	$\Delta_{at}H$
Ionization	$X(g) \rightarrow X^{+}(g) + e^{-}(g)$	$\Delta_{i}H$
Electron gain	$X(g) + e^{-}(g) \rightarrow X^{-}(g)$	$\Delta_{eg}H$
Reaction	reactants → products	$\Delta_{r}H$
Combustion	compound(s,l,g) + $O_2(g) \rightarrow CO_2(g) + H_2O(l)$	$\Delta_{\text{comb}}H$
Compound formation	elements → compound	$\Delta_{\text{form}}H$
Activation	reactants → activated complex	∆H #

Name of the process	Essence of the process	Symbol
Phase transition	α -phase $\rightarrow \beta$ -phase	∆ _{trs} H
Melting	$s \rightarrow I$	$\Delta_{fus} H$
Evaporation	$l \rightarrow g$	∆ _{vap} H
Sublimation	$s \rightarrow g$	∆ _{sub} H
Mixing of liquids	pure substances → mixture	∆ _{mix} H
Solution	pure solute → solution	$\Delta_{\rm sol}H$
Hydration	$X^{\pm}(g) \rightarrow X^{\pm}(aq)$	$\Delta_{hyd} H$
Atomization	$(s,l,g) \rightarrow atoms(g)$	$\Delta_{at} H$
Ionization	$X(g) \rightarrow X^{+}(g) + e^{-}(g)$	$\Delta_{i}H$
Electron gain	$X(g) + e^{-}(g) \rightarrow X^{-}(g)$	$\Delta_{eg} H$
Reaction	reactants → products	$\Delta_{r}H$
Combustion	compound(s,l,g) + $O_2(g) \rightarrow CO_2(g) + H_2O(l)$	$\Delta_{comb}H$
Compound formation	elements → compound	$\Delta_{\text{form}}H$
Activation reactants → activated complex		∆ H [#]

physical changes and chemical changes

Enthalpies of physical changes

- In thermodynamics, phases are states of matter that are only different in their physical properties: g, l, s.
- In solid phase, several different modifications (phases)
 of the same substance are known [e.g. white and red P;
 graphite, diamond, fullerene C; orthorhombic and monoclinic S]
- Changes of state are called **phase transitions**, they are characterized by the standard enthalpy of phase transition $\Delta_{trs}H^{\theta}$.
- Some examples:

 - evaporation \(\Rightarrow\) condensation

 - solid phase transition (orthorhombic

 monoclinic S)

Enthalpies of physical changes

Standard enthalpies of <u>fusion</u> (melting) and <u>evaporation</u> at the temperature of **phase transition**:

	$T_{\rm f}/{\rm K}$	$\Delta_{\rm fus}H^{ m heta}$ /(kJ mol ⁻¹)	T _b /K	$\Delta_{ m vap}H^{ m heta}$ /(kJ mol $^{-1}$)
Не	3.5	0.02	4.2	0.084
Ar	84	1.2	87	6.5
C_6H_6	279	10.6	353	31
H_2O	273	6.0	373	40.7

- All of them are positive as melting and evaporation are endothermic!
- Heat is produced at <u>freezing</u> or <u>condensation</u> (exothermic), so $|\Delta_{trs}H^{\theta}|$ is the same, but the sign is the opposite.

III. Hess's law (different approaches)

- The enthalpy of reaction only depends on the initial and final state, but not on the path or the intermediates. [Enthalpy is a state function. There are obviously several possible paths.]
- The standard enthalpy of the reaction is always the sum of the standard enthalpies of the individual reaction steps in the series.
- The net enthalpy change of a cyclic process is zero. [This is basically a statement of the first law of thermodynamics (conservation of energy) specifically for thermochemistry. It facilitates the calculation of $\Delta_r H^\theta$ values of reaction that are experimentally unfeasible. The Born-Haber cycle is such an application.]

- A direct way to determine $\Delta_r H^0$: measurement by calorimetry. This is typically feasible for fast processes, but often problematic.
 - $H_2 + CI_2 = 2HCI$ fast, easy \odot
 - $C_3H_6 + H_2 = C_3H_8$ do some thinking \odot
- $\Delta_r H^\theta$ can be **calculated from** the $\Delta_{form} H^\theta$ **formation enthalpies** of reactants and products (if they are known).
 - [Enthalpy of formation cannot be measured directly neither for C₃H₆, nor for C₃H₈!]
- $\Delta_{\text{form}}H^{\theta}$ enthalpies of formation are not typically measurable directly but can be calculated from $\Delta_{\text{comb}}H^{\theta}$ combustion enthalpies by Hess's law.
 - $C_3H_6(g) + 4.5 O_2(g) \rightarrow 3 CO_2(g) + 3 H_2O(I)$ enthalpy of combustion
 - $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(l)$ enthalpy of combustion.

Calculation of standard reaction enthalpies from standard enthalpies of formation.

 Using the first law: the standard enthalpy of each reaction is the difference between the standard enthalpies of formation of products and reactants:

$$\Delta_{\mathsf{r}} H^{\theta} = \sum_{\mathsf{products}} v \left(\Delta_{\mathsf{form}} H^{\theta} \right) - \sum_{\mathsf{reactants}} v \left(\Delta_{\mathsf{form}} H^{\theta} \right)$$

An example of calculating a standard enthalpy of reaction from enthalpies of formation:

■ $2 HN_3(I) + 2 NO(g) \rightarrow H_2O_2(I) + 4 N_2(g)$ reaction standard enthalpy of reaction:

$$\begin{split} & \varDelta_{r}H^{\theta} = \\ & = \underbrace{\left\{ \varDelta_{form}H^{\theta} \left(H_{2}O_{2}, I \right) + 4 \cdot \varDelta_{form}H^{\theta} \left(N_{2}, g \right) \right\} - \underbrace{\left\{ 2 \cdot \varDelta_{form}H^{\theta} \left(HN_{3}, I \right) + 2 \cdot \varDelta_{form}H^{\theta} \left(NO, g \right) \right\} = } \\ & = \underbrace{\left\{ 1 \cdot 188 \text{ kJ mol}^{-1} + 4 \cdot 0 \text{ kJ mol}^{-1} \right\} - \left\{ 2 \cdot 264 \text{ kJ mol}^{-1} + 2 \cdot 90 \text{ kJ mol}^{-1} \right\} = } \\ & = -892 \text{ kJ mol}^{-1} \end{split}$$

Calculation of the standard reaction enthalpy from enthalpies of combustion:

The previous calculation can be based on combustions.

An example of calculating standard reaction enthalpy for enthalpies of combustion:

- Calculate $\Delta_r H^{\theta}$ for the $C_3 H_6 + H_2 \rightarrow C_3 H_8$ reaction.
- All three substances can be burnt in a calorimeter

■
$$C_3H_6 + 4.5 O_2 \rightarrow 3 CO_2 + 3 H_2O \Delta_{comb}H^{\theta}(C_3H_6) = -2058 \text{ kJ mol}^{-1}$$

■
$$H_2 + 0.5 O_2 \rightarrow H_2O$$

$$\Delta_{\text{comb}}H^{\theta}(H_2) = -286 \text{ kJ mol}^{-1}$$

■
$$C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$$
 $\Delta_{comb}H^{\theta}(C_3H_6) = -2220 \text{ kJ mol}^{-1}$

Standard enthalpy of the hydrogenation reaction:

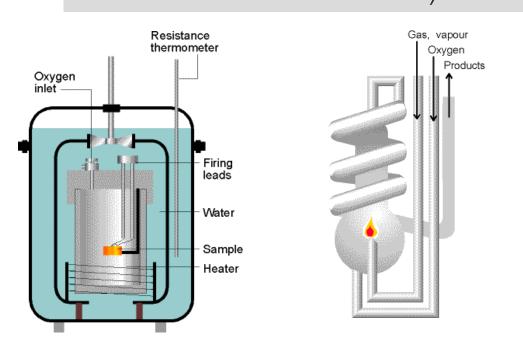
$$\Delta_{r}H^{\theta} = \left\{ \Delta_{comb}H^{\theta}(C_{3}H_{6},g) + \Delta_{comb}H^{\theta}(H_{2},g) \right\} - \left\{ \Delta_{comb}H^{\theta}(C_{3}H_{8},g) \right\} =$$

$$= \left\{ -2058 \text{ kJ mol}^{-1} + \left(-286 \text{ kJ mol}^{-1} \right) \right\} - \left\{ -2220 \text{ kJ mol}^{-1} \right\} =$$

$$= -124 \text{ kJ mol}^{-1}$$

An example of calculating standard reaction enthalpy for enthalpies of combustion:

- Calculate $\Delta_r H^{\theta}$ for the $C_3H_6 + H_2 \rightarrow C_3H_8$ reaction.
- All three substances can be burnt in a calorimeter


■
$$C_3H_6 + 4.5 O_2 \rightarrow 3 CO_2 + 3 H_2O$$
 $\Delta_{comb}H^{\theta}(C_3H_6) = -2058 \text{ kJ mol}^{-1}$
■ $H_2 + 0.5 O_2 \rightarrow H_2O$ $\Delta_{comb}H^{\theta}(H_2) = -286 \text{ kJ mol}^{-1}$
■ $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$ $\Delta_{comb}H^{\theta}(C_3H_6) = -2220 \text{ kJ mol}^{-1}$

Standard enthalpy of the hydrogenation reaction:

$$\begin{split} \varDelta_{r}H^{\theta} &= \left\{ \varDelta_{comb}H^{\theta}(C_{3}H_{6},g) + \varDelta_{comb}H^{\theta}(H_{2},g) \right\} - \left\{ \varDelta_{comb}H^{\theta}(C_{3}H_{8},g) \right\} = \\ &= \left\{ -2058 \text{ kJ mol}^{-1} + \left(-286 \text{ kJ mol}^{-1} \right) \right\} - \left\{ -2220 \text{ kJ mol}^{-1} \right\} = \\ &= -124 \text{ kJ mol}^{-1} \end{split}$$

V. Experimental determination of the heat of reaction, calorimetry

simple calorimeter (for measuring e.g. enthalpy of dilution or neutralization)

- bomb calorimeter $(C_V, ill. \Delta U)$
- flame calorimeter $(C_p, ill. \Delta H)$
- Technical and biological importance of combustion.

Thermometer

Foamed polystyrene cup

Reaction mixture

VI. Heat capacity, types of molar heat capacity.

- Heat capacities were already discussed in detail earlier:
- Types of heat capacity at constant volume or at constant pressure:
 - C_V , C_p : heat capacity (arbitrary n); extensive; $J K^{-1}$
 - $C_{V,m}$, $C_{p,m}$: molar heat capacity (for 1 mol); intensive; J mol⁻¹ K⁻¹
 - c_V , c_p : specific heat (1 kg); intensive; J kg⁻¹ K⁻¹

$$C_{V} = \left(\frac{\partial U}{\partial T}\right)_{V} \qquad C_{p} = \left(\frac{\partial H}{\partial T}\right)_{p}$$

VII. Temperature dependence of reaction enthalpies: Kirchhoff's law.

- As it was shown earlier:
- From the C_p heat capacity, the H enthalpy of a given system can be calculated for different temperatures :

$$H(T_2) = H(T_1) + \int_{T_1}^{T_2} C_{\rho} dT$$

• In practice, the temperature-dependence of the enthalpy of a (chemical) reaction is more important. This can be calculated from the appropriate weighted sum of the heat capacities of the substances participating in the reactions:

$$\Delta_r H(T_2) = \Delta_r H(T_1) + \int_{T_1}^{T_2} \Delta_r C_{\rho,m} dT$$

In thermochemistry, this is called Kirchhoff's law.

VII. Temperature dependence of reaction enthalpies: Kirchhoff's law.

• Kirchhoff' law (in a thermodynamic approach): the standard enthalpy of reaction at T_2 can be calculated from $\Delta_r H^{\theta}(T_1)$ and the molar heat capacities of reactants and products:

Products Temperature, T

19

$$\Delta_{r}H(T_{2}) = \Delta_{r}H(T_{1}) + \int_{T_{1}}^{T_{2}} \Delta_{r}C_{\rho,m}dT$$

$$T_{1}$$

$$T_{1}$$

$$T_{2}$$

$$T_{1}$$

$$T_{2}$$

$$T_{2}$$

$$T_{2}$$

$$T_{1}$$

$$T_{2}$$

$$T_{2}$$

$$T_{2}$$

$$T_{2}$$

$$T_{2}$$

$$T_{2}$$

$$T_{2}$$

$$T_{3}$$

$$T_{4}$$

$$T_{2}$$

$$T_{2}$$

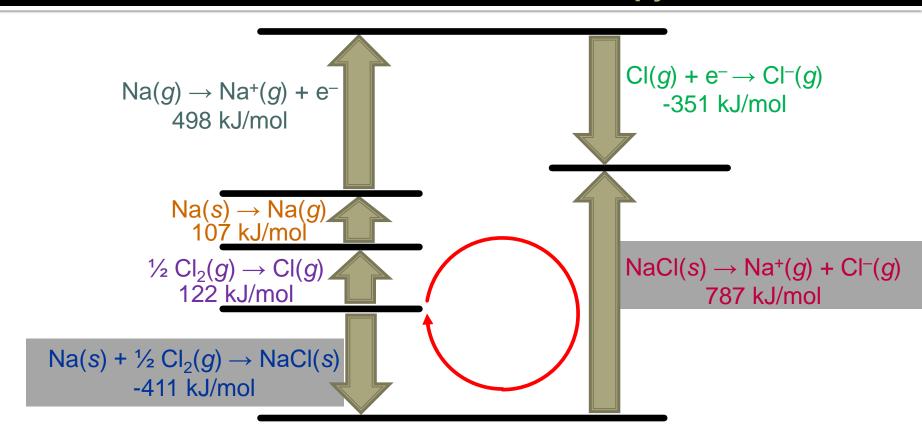
$$T_{3}$$

$$T_{4}$$

$$T_{5}$$

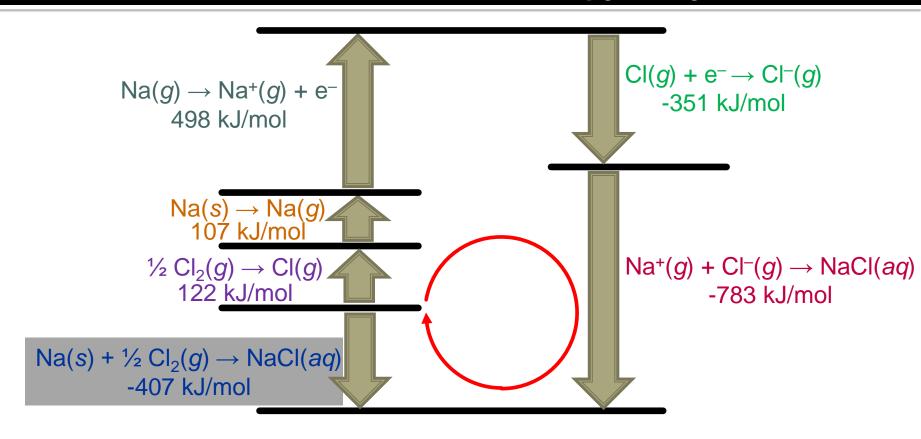
$$T_{6}$$

$$T_{7}$$


$$T$$

VIII. The Born–Haber cycle.

- A common application of the first law is to calculate the $\Delta_{lat}H^{\theta}$ lattice enthalpies of crystals or the $\Delta_{hyd}H^{\theta}$ hydration enthalpies of ions, sometimes the $\Delta_{ea}H^{\theta}$ electron affinity of ions based on the thermodynamic data directly obtained for the rest of the processes in a cycle.
- In a cycle, the net enthalpy change is zero!
- $\frac{1}{2} \Delta_{\text{diss}} H^{\theta}(\text{Cl}_2) + \Delta_{\text{sub}} H^{\theta}(\text{Na}) + \Delta_{\text{i}} H^{\theta}(\text{Na}) + \Delta_{\text{ea}} H^{\theta}(\text{Cl}) + \Delta_{\text{hyd}} H^{\theta}(\text{NaCl}) \Delta_{\text{f}} H^{\theta}(\text{NaCl}, aq) = 0$
- $\frac{1}{2} \Delta_{\text{diss}} H^{\theta}(\text{Cl}_2) + \Delta_{\text{sub}} H^{\theta}(\text{Na}) + \Delta_{\text{i}} H^{\theta}(\text{Na}) + \Delta_{\text{ea}} H^{\theta}(\text{Cl}) \Delta_{\text{lat}} H^{\theta}(\text{NaCl}) \Delta_{\text{f}} H^{\theta}(\text{NaCl}, s) = 0$


VIII. The Born-Haber cycle.

Determination of lattice enthalpy

VIII. The Born-Haber cycle.

Determination of the enthalpy of hydration

