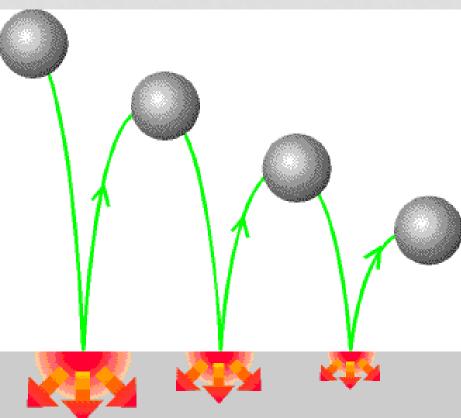

THE SECOND LAW OF THEMRODYNAMICS


- I. Different wordings of the second law
- II. Statistical and thermodynamic definition of entropy
- III. Entropy change in the systems and the surroundings during reversible and irreversible processes
- **IV.** Entropy change in a few important processes
- V. Transformation of heat to work: the essence of the Carnot cycle and the concept of efficiency
- VI. Principles behind heat engines, refrigerators and heat pumps

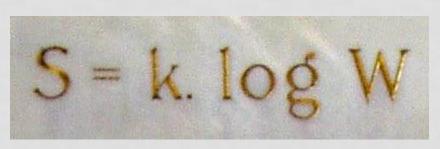
- Background: general experience
 - Under given conditions, there is only one spontaneous direction for a process.

2

- Energy change in the surroundings + energy change in the system = 0
- How can direction of a spontaneous process be characterized?
- NOT the total energy of the isolated systems as it is constant!
- Spontaneous processes always decrease orderliness, energy is dissipated.

- "molecular disorder of substances" (Rudolf Clausius)
- Greek: $\tau \rho \sigma \pi \dot{\eta} = ,, \text{content of change''}$

- Spontaneous processes cannot decrease the entropy in isolated systems.
- Real processes are irreversible, so entropy increases in them: $\Delta S_{tot} > 0$.
- In the state of equilibrium, the entropy of a globally isolated system s at maximum. This is the principle of maximum entropy.


- Spontaneous process: under the given conditions, it proceeds by itself without any external influence.
 - A hot object cools down (heat transfer from high T to low T),
 - Copper deposits on a zinc rod from a solution of copper(II) sulfate,
 - $H_2 + CI_2 \rightarrow 2 HCI$ proceeds spontaneously.
- Under suitable conditions, spontaneous processes can do work (heat engine, Voltaic cell, etc.)!
- The reverse non-spontaneous process can be forced by additional (heat or work:
 - the object can be warmed back by work or heat,
 - the copper on the zinc rod can be re-dissolved by electrolysis,
 - HCI can be decomposed into its elements by heat or electric energy. 6

II. THERMODYNAMIC AND STATISTICAL DEFINITON OF ENTROPY

- In classical (phenomenological) thermodynamics, dS is defined as the ratio of reversible heat exchange and the temperature
 - infinitesimal: $dS = \frac{dq_{rev}}{T}$ • for a finite change: $\Delta S = \int_{t}^{t} \frac{dq_{rev}}{T}$
- In statistical thermodynamics: $S = k \ln W$, where

W is the thermodynamic weight of the dominating configuration of the system,
k is Boltzmann's constant.

II. THERMODYNAMIC AND STATISTICAL DEFINITON OF ENTROPY

Tombstone of Ludwig Boltzmann

• In statistical thermodynamics: $S = k \ln W$, where

W is the thermodynamic weight of the dominating configuration of the system,
k is Boltzmann's constant.

II. THERMODYNAMIC AND STATISTICAL DEFINITON OF ENTROPY

• Entropy:

- <u>State function</u>: its change only depends on the initial and final states, not on the actual path.
- As it is a state function, the entropy change in a reversible cycle is 0: $\int dq_{rev} = 0$

$$\oint dS = \oint \frac{dq_{\rm rev}}{T} = 0$$

- <u>Extensive</u> property: proportional to the amount of substance, units: J K⁻¹ (Clausius)
- <u>Molar entropy</u> is given for 1 mol of a substance, it is an <u>intensive</u> property, units: J K⁻¹ mol⁻¹.
- Every physical or chemical process is accompanied by a change in entropy.

III. ENTROPY CHANGES IN THE SYSTEM AND THE SURROUNDINGS

- The **second law** was stated for an **isolated system**.
- In practice, most systems of interest are in contact with the surroundings at least thermally, but sometimes mechanically as well.
- In such cases, any process results in entropy change both in the system (dS) and its surroundings (dS_{sur} or dS').

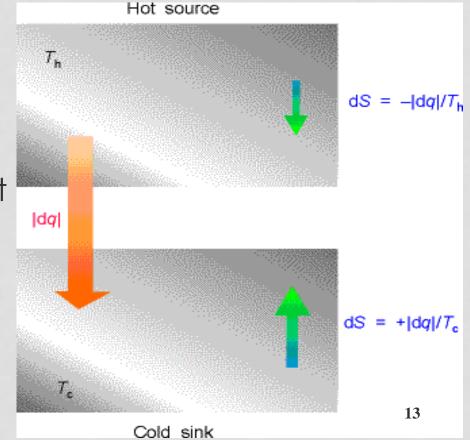
III. ENTROPY CHANGES IN THE SYSTEM AND THE SURROUNDINGS

Clausius inequality:

 In real processes, entropy increases more than the entropy contribution from the heat exchange:

 $dS \ge dq/T$, i.e. $dS - (dq/T) \ge 0$.

- sign > is valid for real, irreversible,
- sign = is valid for reversible processes.



- a) Entropy change in <u>spontaneous heat exchange</u>
- b) Entropy change in <u>adiabatic processes</u>
- c) Dependence of entropy on the <u>volume</u>: expansion of an ideal gas
- d) Entropy change in <u>phase transitions</u> at the temperature of the transition (e.g. melting, boiling)
- e) Dependence of entropy on the temperature

a) <u>Spontaneous heat exchange</u>

- Heat dq is transferred from a hotter (T_h) object (heat source) to a cooler (T_c) object (heat sink).
- |dq| is lost in the heat source, the entropy decreases, -|dq|/T_h.
- |dq| is gained by the heat sink, entropy increases
 +|dq|/T_c.
- Total entropy change:

$$dS = \frac{|dq|}{T_{c}} - \frac{|dq|}{T_{h}} = |dq| \left(\frac{1}{T_{c}} - \frac{1}{T_{h}}\right)$$

b) Adiabatic processes (no heat exchange)

- In adiabatic <u>reversible</u> processes, there is no entropy change as q = 0, so $\Delta S = q_{rev}/T = 0$. These are **isentropic processes**.
- In adiabatic spontaneous processes, no heat is transferred into the surroundings, so the entropy of the surroundings does not change: $dS_{sur} = 0$.

c) Entropy change in <u>isothermal processes</u>: expansion of an ideal gas

- For reversible isothermal expansion: dq = -dw (because dU = 0).
- Calculation of the entropy difference between two states of a system:
 - a reversible path must be found (both heat transfer and work is possible): $q_{f} = nPTn \left(V_{f}\right)$

$$q_{\rm rev} = -w_{\rm rev} = nRT \ln \left(\frac{v_f}{V_i} \right)$$

• for each step, integration of the ratio of the heat and the temperature is necessary.

$$\Delta S = \int_{i}^{f} \frac{dq_{\text{rev}}}{T} = nR \ln \left(\frac{V_{f}}{V_{i}} \right)$$

d) Entropy change of phase transition – at the transition T

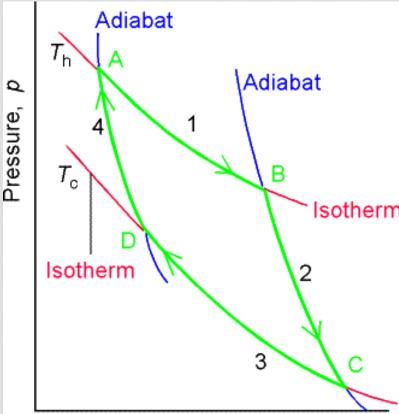
- Melting/freezing or boiling/condensation is accompanied by a substantial change in the molecular order, so a major change in entropy is expected.
 - **Melting**: an ordered solid is transformed into a less order liquid. S increases!
 - **Evaporation**: a condensed phase in a small volume expands into a gas with a large volume, so the entropy of the system must increase markedly:

$$\varDelta_{\rm trs} S = \frac{\varDelta_{\rm trs} H}{T_{\rm trs}}$$

d) <u>Entropy change of phase transition</u> – at the transition T

- Freezing and condensation are exothermic ($\Delta_{trs}H < 0$), so the entropy change of the phase transition is negative. The entropy decrease is in agreement with the fact that the order in the system increases during a liquid \rightarrow solid change.
- Melting and evaporation are endothermic ($\Delta_{trs}H > 0$), so the entropy change of the phase transition is positive. Disorder in the system increases. Entropy increases in these endothermic changes.
- Trouton's rule (observation): most liquids have a standard molar entropy of evaporation at about +85 J K⁻¹ mol⁻¹.
 Deviations can be interpreted microscopically.

	$\Delta_{\rm vap} H^{\Phi}/({\rm kJmol}^{-1})$	θ _b /°C	$\Delta_{\rm vap}S^{ \Phi}({\rm JK^{-1}mol^{-1}})$
Benzene	30.8	80.1	+ 87.2
Carbon disulfide	26.74	46.25	+ 83.7
Carbon tetrachloride	30.00	76.7	+ 85.8
Cyclohexane	30.1	80.7	+ 85.1
Decane	38.75	174	+ 86.7
Dimethyl ether	21.51	-23	+ 86
Ethanol	38.6	78.3	+ 110.0
Hydrogen sulfide	18.7	-60.4	+ 87.9
Mercury	59.3	356.6	+ 94.2
Methane	8.18	-161.5	+73.2
Methanol	35.21	65.0	+ 104.1
Water	40.7	100.0	+ 109.1
Data: JL			


Table 4.2 Standard entropies of vaporization of liquids at their normal boiling point

Trouton's rule (observation): most liquids have a standard molar entropy of evaporation at about +85 J K⁻¹ mol⁻¹.
 Deviations can be interpreted microscopically.

e) Dependence of entropy on the <u>temperature</u>
Discussion is forthcoming at the **third law**

V. TRANSFORMATION OF HEAT TO WORK. THE CARNOT CYCLE AND ITS EFFICIENCY

- (A→B) Isothermal reversible expansion at temperature T_h: the system does work and absorbs heat.
- 2. (**B** \rightarrow **C**) Adiabatic reversible expansion, cooling from T_h to T_c : the system does work, but no heat exchange occurs.
- (C→D) Isothermal reversible compression at T_c: work is done on the system and heat is released.

Volume, V

4. (D \rightarrow A) Adiabatic reversible compression: work is done on the system, no heat exchange occurs. The system warms up, the initial state is restored: $T_c \rightarrow T_h$.

V. TRANSFORMATION OF HEAT TO WORK. THE CARNOT CYCLE AND ITS EFFICIENCY

Carnot efficiency in the cycle:

- Efficiency (ϵ): the ratio of the work gained ($q_{\rm h}-q_{\rm c}$) and heat absorbed ($q_{\rm h}$) :

$$\varepsilon = \frac{q_{\rm h} - q_{\rm c}}{q_{\rm h}} = \frac{T_{\rm h} - T_{\rm c}}{T_{\rm h}} = 1 - \frac{T_{\rm c}}{T_{\rm h}}$$

- ε is larger T_c decreases and T_h increases
- ε is maximal (=1), if $T_c \rightarrow 0$ or $T_h \rightarrow \infty$. [This cannot happen in reality.]

VI. HEAT ENGINES, REFRIGERATORS AND HEAT PUMPS

- Heat engines: thermal energy (heat of combustion) is transformed into mechanical work. A classic example is the heat engine (the invention of Watts was the beginning of the industrial revolution), internal combustion engine, steam turbine, gas turbine.
 - In a steam engine, work is done by expanding gas at high temperature in a piston in cycles.
 - The heat of combustion of the fuel (coal, oil, gas, wood, gasoline etc.) is transformed into work.

VI. HEAT ENGINES, REFRIGERATORS AND HEAT PUMPS

- Refrigerator: with the addition of work, heat is absorbed from the system (cooling chamber) and is released at a place of higher temperature (in a room), so the system (chamber) is cooled.
 - Work (electric) is done to cool the chamber (inside the refrigerator) (and the room is warmed somewhat, but this is usually negligible).
 - Coefficient of performance:

$$c^{0} = rac{|q_{c}|}{|w|} = rac{|q_{c}|}{|q_{h}| - |q_{c}|} = rac{T_{c}}{T_{h} - T_{c}}$$

VI. HEAT ENGINES, REFRIGERATORS AND HEAT PUMPS

- Heat pump: with the addition of work, heat is absorbed from a large source (e.g. soil, lake, air) and is released to the system (apartment), which is heated.
 - (Electric) work is used to heat the system.
 - The cooling in the large source only causes negligibly small decrease in the temperature.

THE THIRD LAW OF THEMRODYNAMICS

- I. Different wordings of the third law
- II. Temperature dependence of entropy
- III. Absolute and standard values of entropy
- IV. Standard reaction entropy

Walther Hermann Nernst (1864-1941) German physical chemist **1920:** Nobel prize for work in thermochemistry

W. Nemst 25

I. DIFFERENT WORDINGS OF THE THIRD LAW

- The entropy of each element is zero at T = 0 K in its stable from. The entropy of a compound is also zero at T = 0 K if it forms a perfect crystal. With this convention, each substance has a positive and measurable entropy.
- Nernst heat theorem: The entropy change of any physical or chemical process tends to zero as the temperature tends to zero: $\Delta S \rightarrow 0$ if $T \rightarrow 0$.
- In statistical thermodynamics: for perfect crystalline substances (when $W_0 = 1$): $S_0 = k \ln W_0 = 0$.

II. TEMPERATURE DEPENDENCE OF ENTROPY

- Upon absorbing heat:
 - the temperature of objects increases,
 - at certain, well-defined temperatures, phase transition (meting, boiling) occurs.
- From the definition of entropy, $dS = dq_{rev}/T$:
 - when T increases, the entropy increases, and
 - entropy changes during phase transitions as well.

II. TEMPERATURE DEPENDENCE OF ENTROPY

When temperature increases:

• The entropy of the system at T_f can be calculated from the entropy $S(T_i)$ at the initial T_i temperature and the absorbed heat q_{rev} :

$$\Delta S = \int_{i}^{f} \frac{dq_{\text{rev}}}{T} \qquad S(T_{f}) = S(T_{i}) + \int_{i}^{f} \frac{dq_{\text{rev}}}{T}$$

• A dq_{rev} may be calculated from the C_p heat capacities that are often known in a wide temperature range through substituting $dq_{rev} = C_p dT$:

$$S(T_f) = S(T_i) + \int_i^f \frac{C_p dT}{T}$$

II. TEMPERATURE DEPENDENCE OF ENTROPY

At phase transition:

• The entropy change during phase transition is measured readily, as the temperature is constant throughout the process:

$$\Delta_{\rm trs} S = \frac{\Delta_{\rm trs} H}{T_{\rm trs}}$$

Each state of matter and phase transition is summed:

$$S(T_{f}) = S(0) + \int_{0}^{T_{fp}} \frac{C_{\rho}(s)dT}{T} + \frac{\Delta_{fus}H}{T_{fp}} + \int_{T_{fp}}^{T_{bp}} \frac{C_{\rho}(I)dT}{T} + \frac{\Delta_{vap}H}{T_{bp}} + \int_{T_{bp}}^{T_{f}} \frac{C_{\rho}(g)dT}{T}$$

III. ABSOLUTE AND STANDARD ENTROPIES

Since S(0) = 0 J K⁻¹ mol⁻¹, entropy values have an absolute value (unlike U and H.)

The entropy can be given for

- <u>substances</u> (elements and compounds): this is given at standard state and any temperature as: S_m^{θ} ,
- physical or chemical <u>processes</u>: the change of entropy for the process is: ΔS .

III. ABSOLUTE AND STANDARD ENTROPIES

		S _m ^θ /(J K ^{−1} mol ^{−1})
Solids:	graphite, C(s)	5.7
	diamond, C(s)	2.4
Liquids:	water, $H_2O(I)$	69.9
	mercury, Hg(I)	76.0
Gases:	methane, $CH_4(g)$	186.3
	carbon dioxide, CO ₂ (g)	213.7
	hydrogen, H ₂ (g)	130.7
	helium, He(g)	126.2
	ammonia, NH ₃ (g)	192.3
	nitrogen, N ₂ (g)	192.1

IV. STANDARD ENTROPIES FOR CHEMICAL PROCESSES

• In a chemical reaction: standard reaction entropy, $\Delta_r S^{\Theta}$ is the difference of entropies for products and reactants:

$$\varDelta_{r}S^{\theta} = \sum_{\text{products}} \boldsymbol{v} \cdot \boldsymbol{S}_{m}^{\theta} - \sum_{\text{reactants}} \boldsymbol{v} \cdot \boldsymbol{S}_{m}^{\theta}$$

Δ_rS^θ is very important for a reaction (gives the direction of the spontaneous reaction).

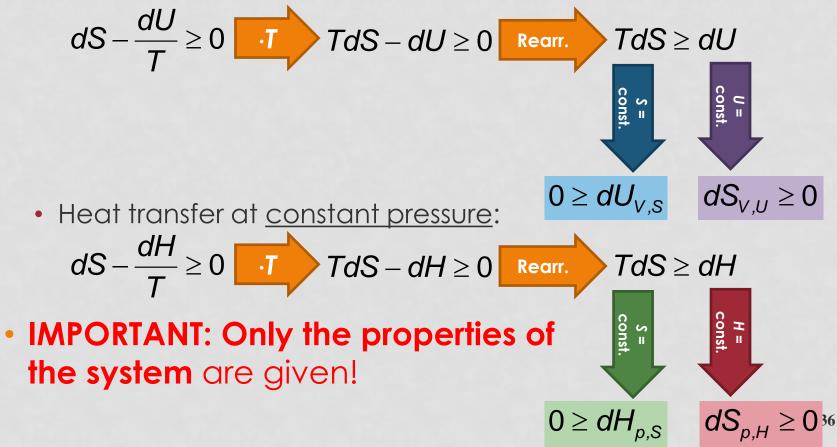
- Real-life systems are usually not isolated.
 - When a system is not isolated, the **entropy of the surroundings should also be taken into account**. This is quite difficult.
 - Thermodynamics overcame this problem by defining new functions: Helmholtz and Gibbs energies.
 32

THERMODYNAMIC POTENTIALS

- I. Combination of the first and second laws of thermodynamics.
- II. The Helmholtz and Gibbs energies
 - Thermodynamic potential functions and their use to find the directions of spontaneous processes.
 - The conditions of equilibrium in closed and in opened systems.
- III. Properties of the <u>Gibbs energy</u>

I. COMBINATION OF THE FIRST AND SECOND LAWS OF THERMODYNAMICS

- first law: *dU* = *dw* + *dq dw* = -*pdV* (expansion work)
 second law:
 - dq = TdS (reversible heat transfer)
- The two laws are combined. This gives the so-called fundamental equation):


$$dU = TdS - pdV$$

- Our investigation focuses on the <u>system</u> only.
- Conditions:
 - The system and the surroundings are in thermal equilibrium: T = T'
 - There is only expansion work, no other work.
- The starting point is the **Clausius inequality**:

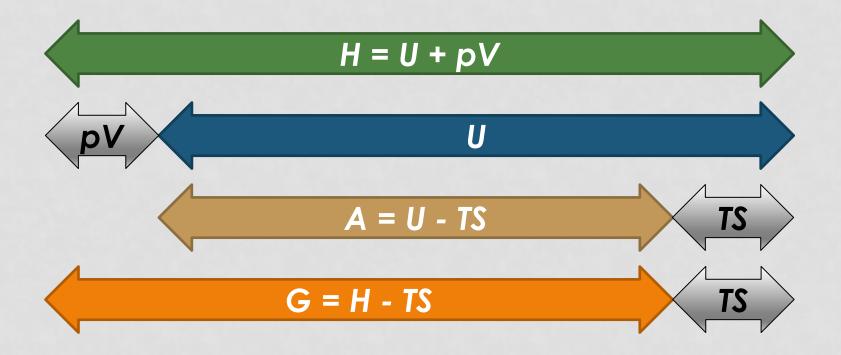
$$dS \ge \frac{dq}{T}$$

$$dS - \frac{dq}{T} \ge 0$$

- There are two ways for further calculations:
 - Heat transfer at constant volume (no expansion work):

- There are two ways for further calculations:
 - Heat transfer at <u>constant volume</u> (no expansion work): $dS - \frac{dU}{T} \ge 0$ T $TdS - dU \ge 0$ Rearr.

$$0 \ge dU - TdS$$
 so, at constant T, $0 \ge dA_{T,V}$


• Heat transfer at constant pressure:

$$dS - \frac{dH}{T} \ge 0 \quad T \quad TdS - dH \ge 0$$
Rearr.

 $0 \ge dH - TdS$ so, at constant T, $0 \ge dG_{T,p}$

Thermodynamic potential used	Conditions	The direction of a spontaneous process
Internal energy(U)	constant S and V	$\frac{dU_{s,V} \le 0}{(decreases)} dU = TdS - pdV$
Enthalpy (H)	constant S and p	$\begin{array}{l} dH_{s,p} \leq 0 \\ (decreases) \end{array} dH = TdS + Vdp \end{array}$
Entropy (S)	constant U and V	dS _{U,V} ≥0 (increases)
Entropy (S)	constant U and p	dS _{U,p} ≥0 (increases)
Helmholtz energy (A)	constant T and V	$\begin{array}{c c} dA_{T,V} \leq 0 \\ (decreases) \end{array} dA = -SdT - pdV$
Gibbs energy (G)	constant T and p	$\begin{array}{c} dG_{T,p} \leq 0 \\ (decreases) \end{array} dG = -SdT + Vdp \end{array}$

RELATIONSHIP BETWEEN DIFFERENT THERMODYNAMIC POTENTIAL FUNCTIONS

II. THE HELMHOLTZ AND GIBBS ENERGIES

• These thermodynamic functions give the following properties for reversible processes:

a) Maximum useful work:

- The Helmholtz energy is the maximum useful work at constant T and V (e.g. in a closed autoclave):
 |dw_{max}| = |dA| = |dU TdS|
- The Gibbs energy is the maximum useful work at constant T and p (e.g. in a flask) : $|dw_{e,max}| = |dG| = |dH TdS|$

b) The direction of a spontaneous process:

• In an open isothermal system, the Helmholtz or the Gibbs energy decreases: $dA_{T,V} < 0$, or $dG_{T,p} < 0$

c) The condition and position of an equilibrium:

• An open system is in equilibrium if $dA_{T,V} = 0$, or $dG_{T,p} = 0$ (the functions are in the minimum).

The G Gibbs energy – similarly to U, H, S and A – can be given for

- pure substances, like
 - elements (G = 0 by definition) and
 - <u>compounds</u>: this is called standard Gibbs energy of formation: $\Delta_{form}G^{\theta}$.
- processes, such as
 - <u>physical processes</u>, e.g. phase transition: $\Delta_{\rm trs}G^{\theta}$
 - <u>chemical reactions</u>: this is called standard reaction Gibbs energy: $\Delta_r G^{\theta}$.

- The Gibbs energy, G, is a very important thermodynamic function.
- "Versions":
 - Standard formation Gibbs energy, $\Delta_{form}G^{\theta}$: when a compound is formed from standard state elements.
 - These values are collected in thermodynamic tables and are used for the calculation of the Gibbs energies of different chemical reactions.
 - Standard reaction Gibbs energy, $\Delta_{
 m r}G^{
 m heta}$

$$\Delta_{\rm r}G^{\rm \theta} = \Delta_{\rm r}H^{\rm \theta} - T\Delta_{\rm r}S^{\rm \theta} = \sum_{\rm products} \nu\Delta_{\rm form}G^{\rm \theta} - \sum_{\rm reactants} \nu\Delta_{\rm form}G^{\rm \theta}$$

- a) G decreases with increasing T (negative sign), the proportionality constant is the S entropy (at p = constant).
 - The entropy is the smallest in solid phase, somewhat larger is liquids and the largest in solids.
 - For this reason, the decrease of G with increasing T is the steepest for gases and the less steep for solids. This can be seen from the slopes of the G = f(T) functions.

Temperature, T

- b) G increases with increasing p (positive sign), the proportionality constant is the V volume (at T = constant).
 - The volume is larger in gas phase as in liqiud, and usually larger in liquid phase as in solid.
 - The increase of the G with increasing p is the steepest for gases. Since the volume of a liquid or a solid is much smaller, the G value for these two condensed phases does not depend so much on p.

