
CHEMICAL POTENTIAL

The concept of calculation of the chemical potential 

in one- and multi-component systems

I. Chemical potential of an ideal gas

II. Chemical potential of real gases. Fugacity

III. Chemical potential of liquids

IV. Chemical potential in multicomponent systems. 

The Gibbs–Duhem equation 

V. Ideal mixtures. The Raoult and Henry laws

VI. Real mixtures and solutions
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CHEMICAL POTENTIAL

• G Gibbs free energy has been introduced to 

characterize the equilibrium state of spontaneous 

processes. 

• The calculations are more straightforward if the 

partial derivative of G with respect to the 

composition of the system is used: this will be called 

chemical potential.

• The condition of equilibrium in all systems: the 

chemical potentials of a component in each phase 

must be the same.
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• The chemical potential of a pure substance is the 

same as the molar Gibbs free energy:

• The chemical potential μi of component i in a  

mixture is the partial molar Gibbs free energy:
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U, H, A and G are not only state functions but 

also thermodynamic potential functions.

Chemical potential under different conditions:

definition of μJ with G:

(isothermal, isobaric)

definition of μJ with U :

(isochoric, isentropic)

definition of μJ with H :

(isobaric, isentropic)

definition of μJ with A:

(isochoric, isothermal)
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I. CHEMICAL POTENTIAL OF AN 
IDEAL GAS

• The simplest system: the ideal gas.

• Its Gibbs free energy at pressure p and temperature T:

• The chemical potential at pressure p is obtained by 

derivation with respect to n:
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G0 is the standard molar free energy of the gas  

(at p0 = 1 bar and given T).

μ0 is the standard chemical potential: the 

standard molar free energy of the pure gas         

(at p0 = 1 bar and a given T). 
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• The standard state is reached at p0.

• If p → 0, then μ → -∞.

• On a graph:
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• The definition of fugacity: for real gases, the 

measured pressure p in the formula giving the 

pressure dependence of the chemical potential is 

replaced by effective pressure, which is called

fugacity (f):
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• Two issues should be settled.

• the relationship between fugacity and pressure:      
f = γp γ is the dimensionless fugacity coefficient

• the standard state p0 of a real gas: a hypothetical 

state in which the pressure pθ and it behaves like 

an ideal gas (no interactions).

• RTlnγ is a measure of the intermolecular forces.
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II. CHEMICAL POTENTIAL OF A 
REAL GAS



• At high pressure, repulsion forces 
are dominant, so the chemical 
potential of real gases is higher than 
for an ideal gas.

• At intermediate pressure, attraction 
is dominant, so the chemical 
potential is lower than for an ideal 
gas.

• As p → 0, μ will be the same as for 
an ideal gas, as no significant 
intermolecular interaction is 
possible.
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III. CHEMICAL POTENTIAL OF LIQUIDS

• How does µ depend on the composition?

• Starting point: in equilibrium, µ is equal in the liquid 

and gas phases:
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• The equality of µ values is

true both for the solute (B)

and the solvent (A).



IV. MULTICOMPONENT SYSTEMS.     
THE GIBBS–DUHEM EQUATION

• In a multicomponent system (e.g. mixture), the Gibbs 

free energy is additive, it can be obtained as the sum 

of the partial molar Gibb free energies (chemical 

potentials) of the individual components: 

• If only the compositions changes (at constant T and 

p):

• But from the definition: 

• Combining the two gives:
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V. IDEAL MIXTURES. RAOULT’S AND
HENRY’S LAW

• For pure A (*):

• A in solution:

• By subtracting the two equations:

• Based on experimental results, Raoult

formulated a law ( for „the mixtures of related 

substances”):  

• For ideal mixtures, the following can be written 

(this is also a definition):
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V. IDEAL MIXTURES. RAOULT’S AND
HENRY’S LAW

• For and ideal mixture, both components (A and B) 
follow Raoult’s law:

and

• There are so-called ideal dilute solutions where the 
partial pressure of the solute is directly proportional 
to its molar fraction and the proportion constant –
instead of the pressure of the solute – is another 
pressure-like constant (KB): 

• This is Henry’s law (valid mainly for dissolved gases). 
KB is called Henry’s constant (and is different from 
the vapor pressure of the pure solute).
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François-Marie Raoult

1830 – 1901

French chemist

William Henry 

1774 – 1836

English chemist 



V. IDEAL MIXTURES. RAOULT’S AND
HENRY’S LAW

• Validities of Raoult’s law and Henry’s law:
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VI.  REAL MIXTURES AND SOLUTIONS: 
ACTIVITY

• For real gases, fugacity (effective pressure, f = γp) was 

used instead of pressure.

• For real mixtures and solutions – in order to keep the 
simple formalism of thermodynamics – activity (a) 
and activity coefficient (γ) are used instead of 

concentration (xA).

• aA = A xA

•

• A = A
* + RT lnxA + RT lnA
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VI.  REAL MIXTURES AND SOLUTIONS: 
ACTIVITY

• Standard states (summary):
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Component
Standard 

state

Chemical 

potential
kLimits

solvent A

(Raoult’s law)
pure solvent

A = A* + RT lnaA

aA = pA/pA*  and

aA = A xA

A → 1 when xA → 1 

(pure solvent)

solute B

(Henry’s law)

pure solute 

(hypothetic 

state)

B = B
† + RT lnaB

aB = pB/KB and

aB = B xB

B → 1 when xB → 0



THERMODYNAMICS OF                               
ONE-COMPONENT SYSTEMS

I. Phase diagrams

II. Phase stability and phase transitions

III. The use of chemical potential to describe the 

equilibria in one-component multiphase systems

IV. The effect of pressure on phase equilibria

V. The effect of temperature on phase equilibria. The 

Clapeyron equation

VI. Liquid-vapor systems: Clausius–Clapeyron equation. 

VII. Ehrenfest classification of phase transitions

VIII.Surface tension. Curved surface. Capillary action
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THERMODYNAMICS OF                               
ONE-COMPONENT SYSTEMS

Principles of discussion:

• Equilibrium systems (states) are described and 

studied. (Phases are stable or phase transitions 

happen depending on T, p, V and xi.)

• In equilibrium, chemical potentials (μ) for all 

components in all phases are the same.

• Equilibrium exists only in a closed system.

• The changes (phase transitions) are reversible. 

(Phase transitions between solid phases are often 

irreversible.)

• The time needed for a phase transition is not 

discussed. 19



• Experimentally defined diagrams.                      

They reflect equilibrium states.
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I.  PHASE DIAGRAMS

▪ Areas: only one phase is stable                                                       

(gas laws apply within such an area).

―Lines (phase boundaries): two                                                                    

phases are stable, they are in                                                

equilibrium.

• Triple point (T3): three phases are                                                     

stable in equilibrium.

• Critical point (Tc): at temperatures higher than Tc, there is 

the gas phase, at lower temperatures, the vapor phase.

▪ Supercritical state

Gas

Super-
critical



• Phase diagram of CO2:

• Since the triple point is 

above 1 atm, the fluid 

does not exist at 

atmospheric pressure.

• In a CO2 gas cylinder, 

there is liquid or high-

pressure gas.

• Solid CO2 sublimates so 

it is called "dry ice".
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I.  PHASE DIAGRAMS

• Phase diagram of H2O:

• The melting point of 
ice decreases with 
increasing pressure! 
(The density of H2O(l) 
is higher and molar 
volume is lower than 
for ice.)

• At high pressures, 
there are different 
crystalline forms of 
ice (II, III, V, VI, VII).
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II. PHASE STABILITY AND PHASE 
TRANSITIONS

Experience:

• These are physical (not chemical) transitions.
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→ name ← name Comment

l ↔ g evaporation condensation

Two types of boiling 

points:

• normal: 1 atm

• standard: 1 bar

s ↔ l melting freezing

Two types of melting/ 

freezing points:

• normal: 1 atm

• standard: 1 bar

s ↔ g sublimation condensation

sα↔ sβ solid phase transitions usually slow



III. THE USE OF CHEMICAL POTENTIAL 
TO DESCRIBE PHASE TRANSITIONS

• Look at a system with constant p and T, where μ is 

not the same in all phases, i.e. there is equilibrium in 

the system.

• If μ1 > μ2, than dn amount of substance is transferred 

from state 1 to state 2 (this can be either physical or 

chemical transformation).

Initial state Spontaneous process Final state
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III. THE USE OF CHEMICAL POTENTIAL 
TO DESCRIBE PHASE TRANSITIONS

• It is well-known how the chemical potential 

changes with changing the conditions (T, p): 
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• the μ chemical potential 

decreases with increasing T. The 

slope increases in the solid → liquid 

→ gas direction (since the entropy 

of the system increases in this 

order).

• When changing T and p, phase 

transitions occur (forth and back).

• Phase transitions occur at well-

defined temperatures and 

depend on the pressure p.

III. THE USE OF CHEMICAL POTENTIAL 
TO DESCRIBE PHASE TRANSITIONS
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Summarizing the T-dependence of the different states:



IV. EFFECT OF PRESSURE ON                       
PHASE EQUILIBRIA

The effect of p external pressure to the 

Tfus melting point:

• It is known from thermodynamics that the μ 

chemical potential increases with increasing p:

• Usually Vm(l) > Vm(s), thus Tfus increases with 

increasing p: at higher pressures, the melting point 

of a solid is higher.

• Water is an exception: Vm(l) > Vm(s), therefore, the 

Tfus melting point value decreases with increasing 

pressure.    (In everyday life: glaciers, skating)
27

mV
p

T

=











e.g. dμ = Vmdp



IV. EFFECT OF PRESSURE ON                       
PHASE EQUILIBRIA

The effect of P external pressure to the                                               
p vapor pressure:

• Only the condensed (liquid) phase is affected by P.

• Experimental finding: ΔP external pressure increases 
the p vapor pressure because the molecules are 
"squeezed" into the vapor phase.

• Explanation: Initially, the chemical potential is the 
same in the two phases:  μ(g)* = μ(l)*

• After ΔP change in the external pressure, the 
chemical potentials are still the same:                                                             
dμ(g) = dμ(l), dμ(g) = Vm(g)dp so  dμ(l) = Vm(l)dP.

• For a perfect gas: Vm(g) = RT/p i.e. dμ(g) = RTdp/p.

• From integration                                                                                        
(p* is the normal vapor pressure):
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V. EFFECT OF TEMPERATURE ON 
VAPOR PRESSURE.                           

CLAPEYRON EQUATION. 
• The two phases are in equilibrium: μα(p,T) = μβ(p,T), 

and remain in equilibrium: dμα = dμβ

• From thermodynamics, dμ = Vmdp – SmdT for both 
phases, so: Vα,mdp – Sα,mdT = Vβ,mdp – Sβ,mdT.

• Rearrangement of the equations gives the so-called 
Clapeyron equation:

• Three cases are discussed:

a) solid → liquid,

b) liquid → gas,

c) solid → gas.
29

ΔSm: molar entropy change for

phase transition
ΔVm: molar volume change for

phase transition
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a) solid → liquid (s → l) phase transition: melting

• The Clapeyron equation for melting/freezing:

• ΔfusH is always positive,

• ΔfusV is usually positive (except for water), but also small, so, 

dp/dT is large and positive.

• Integration between p* and p, and T*

and T (at constant ΔfusH-t and ΔfusV):

• Simplification and re-arrangement:

• This is the equation of the straight line on the phase diagram.

V. EFFECT OF TEMPERATURE ON 
VAPOR PRESSURE.                           

CLAPEYRON EQUATION. 

30

 =

T

*T

p

*p
T

dT

V

H
dp

fus 

fus 





*T

T

V

H
*pp ln

fus 

fus 




+=

*TV

*)TT(H
*pp



−
+=

fus 

fus 





TV

H

V

S

dT

dp


==

fus 

fus 

fus 

fus 









T

dT

V

H
dp

fus 

fus 




=



VI. CLAUSIUS–CLAPEYRON EQUATION

b) liquid → vapor (l → g) phase transition: evaporation

• The Clapeyron equation for evaporation/condensation:

• ΔvapH is always positive,

• ΔvapV is always large positive(even for water!), so, dp/dT is 

positive but smaller than for s → l.  At the same time, ΔvapV ≈ 

Vm(g).

• For a perfect gas: Vm(g) = RT/p.

• Summarizing these gives the                                              

Clausius–Clapeyron equation:

• Integrated form:
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VI. CLAUSIUS–CLAPEYRON EQUATION

• For two measured (p,T) pairs, 

definite integral gives the value

of ΔvapH as follows:

• A better solution is to measure 

many (p,T) data pairs. lnp

plotted versus 1/T gives a 

straight line with a slope of                  

–ΔvapH/R.

32









−−=

12

vap 

1

2 11
ln

TTR

H

p

p 



VI. CLAUSIUS–CLAPEYRON EQUATION

c) solid → vapor (s → g) phase transition: sublimation

• Sublimation is very similar to evaporation.

• Clausius–Clapeyron equation for sublimation:

• Integrated form:

• For two measured (p,T) pairs,                                                      

definite integral gives the 

value of ΔvapH as follows:
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VII. EHRENFEST CLASSIFICATION OF 
PHASE TRANSITIONS

First-order phase transitions: 

• the first derivative of chemical potential 
with respect to temperature (dμ/dT) is 

discontinuous

• e.g. g → l, l → s, s → g, …

Second-order phase transitions:

• ΔH = 0, ΔS = 0, ΔV = 0

• dμ/dT is continuous, but d2μ/dT2 is 

discontinuous!

• e.g. conducting-superconducting transition

in metals, order-disorder transitions in alloys, 
fluid-superfluid transition for He
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Paul Ehrenfest

1880 – 1933
Austrian and Dutch 

theoretical physicist

https://en.wikipedia.org/wiki/Paul_Ehrenfest


VII. EHRENFEST CLASSIFICATION OF 
PHASE TRANSITIONS
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• Changes in thermodynamic properties 

accompanying phase transitions:



• Liquids have a tendency to assume a shape that 

minimizes the surface → spherical drops

• Reason:

• The work dw necessary to increase the surface by dσ

is calculated as: dw = γdσ

(γ: surface tension, J m-2 ≡ N m-1)

• At constant T and V
dw = dA = γdσ, and because                                                               

dA < 0 then dσ < 0.
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VIII. SURFACE TENSION. CURVED
SURFACE. CAPILLARY ACTION.



• Bubble: a region filled 

with vapor (and air) 

enclosed within a thin 

liquid film.

• Cavity: a region filled with 

vapor within a liquid.
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Drop:

double surface!

VIII. SURFACE TENSION. CURVED
SURFACE. CAPILLARY ACTION.



VIII. SURFACE TENSION. CURVED
SURFACE. CAPILLARY ACTION.
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Laplace equation (for cavities):

• The pressure is always larger in the internal part of a 

curved surface (on the concave side of the 

surface, within the cavity) than outside.

Kelvin equation (for droplets):

• the vapor pressure of a liquid depends on the

external pressure:
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VIII. SURFACE TENSION. CURVED
SURFACE. CAPILLARY ACTION.
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2γ/r = ρgh

Measuring surface tension:

• by measuring r (number of 

droplets),

• from capillary rise.
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• Rise of liquid level due to capillary action:
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wetting non-wetting

(convex)       (concave)

2
h

gr




=

VIII. SURFACE TENSION. CURVED
SURFACE. CAPILLARY ACTION.


