The concept of calculation of the chemical potential in one- and multi-component systems

- I. Chemical potential of an ideal gas
- II. Chemical potential of real gases. Fugacity
- III. Chemical potential of liquids
- IV. Chemical potential in multicomponent systems. The Gibbs–Duhem equation
- V. Ideal mixtures. The Raoult and Henry laws
- VI. Real mixtures and solutions

- G Gibbs free energy has been introduced to characterize the equilibrium state of spontaneous processes.
- The calculations are more straightforward if the partial derivative of G with respect to the composition of the system is used: this will be called **chemical potential**.
- The condition of equilibrium in all systems: the chemical potentials of a component in each phase must be the same.

 The chemical potential of a pure substance is the same as the molar Gibbs free energy:

$$\mu = \left(\frac{\partial nG_{\rm m}}{\partial n}\right)_{T,p} = G_{\rm m}$$

 The chemical potential µ_i of component i in a mixture is the partial molar Gibbs free energy:

$$\mu_i = \left(\frac{\partial \mathbf{G}}{\partial \mathbf{n}_i}\right)_{\mathsf{T},\mathsf{p},\mathsf{n}_j}$$

Chemical potential under different conditions:

definition of μ_J with G: (isothermal, isobaric)	$\mu_i = \left(\frac{\partial \mathbf{G}}{\partial \mathbf{n}_J}\right)_{T,p,n'}$
definition of μ_J with U : (isochoric, isentropic)	$\mu_i = \left(\frac{\partial U}{\partial n_J}\right)_{V,S,n'}$
definition of µ _J with H : (isobaric, isentropic)	$\mu_i = \left(\frac{\partial H}{\partial n_J}\right)_{p,S,n'}$
definition of μ_J with A: (isochoric, isothermal)	$\mu_i = \left(\frac{\partial A}{\partial n_J}\right)_{V,T,n'}$

U, H, A and G are not only <u>state functions</u> but also <u>thermodynamic potential functions</u>.

I. CHEMICAL POTENTIAL OF AN IDEAL GAS

- The simplest system: the ideal gas.
- Its Gibbs free energy at pressure *p* and temperature *T*: $G = G^{\theta} + nRT \ln\left(\frac{p}{p^{\theta}}\right)$

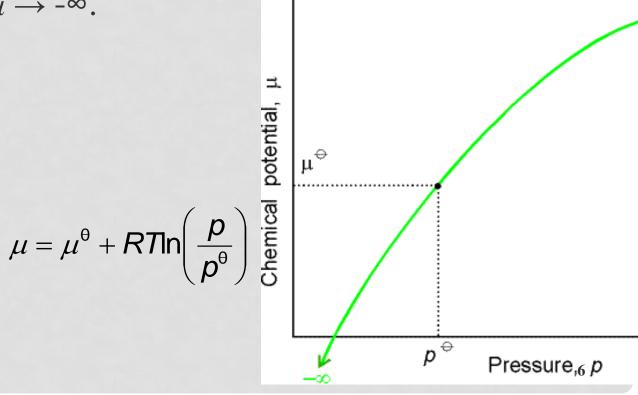
 G^{θ} is the standard molar free energy of the gas (at $p^{\theta} = 1$ bar and given T).

5

• The chemical potential at pressure p is obtained by derivation with respect to n: $\mu = \mu^{\theta} + RT \ln \left(\frac{p}{p^{\theta}}\right)$ $\mu^{\theta} \text{ is the standard chemical potential: the standard molar free energy of the pure gas (at <math>p^{\theta} = 1$ bar and a given T).

I. CHEMICAL POTENTIAL OF AN IDEAL GAS

- The standard state is reached at p^{θ} .
- If $p \rightarrow 0$, then $\mu \rightarrow -\infty$.
- On a graph:



II. CHEMICAL POTENTIAL OF A REAL GAS

• The **definition of fugacity**: for **real gases**, the measured pressure *p* in the formula giving the pressure dependence of the chemical potential is replaced by **effective pressure**, which is called fugacity (f): $\mu = \mu^{\theta} + RT \ln \left(\frac{f}{p^{\theta}}\right)$

$$\mu = \mu^{\theta} + RT \ln \left(\frac{p}{p^{\theta}}\right)$$

II. CHEMICAL POTENTIAL OF A REAL GAS

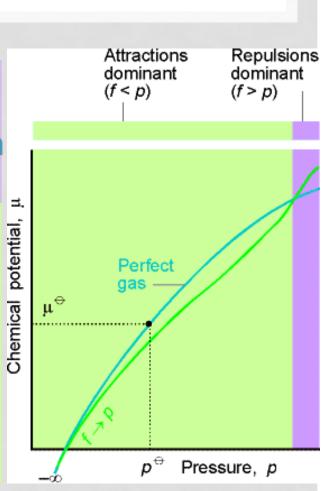
- <u>Two issues should be settled</u>.
 - the relationship between fugacity and pressure: $f = \gamma p$ γ is the dimensionless fugacity coefficient
 - the standard state p^θ of a real gas: a hypothetical state in which the pressure p^θ and it behaves like an ideal gas (no interactions).

• $RT \ln \gamma$ is a measure of the intermolecular forces.

$$\mu = \mu^{\theta} + RT \ln\left(\frac{p}{p^{\theta}}\right) + RT \ln\gamma$$

I. CHEMICAL POTENTIAL OF A REAL GAS

- At high pressure, repulsion forces are dominant, so the chemical potential of real gases is higher than for an ideal gas.
- At intermediate pressure, attraction is dominant, so the chemical potential is lower than for an ideal gas.
- As p → 0, μ will be the same as for an ideal gas, as no significant intermolecular interaction is possible.

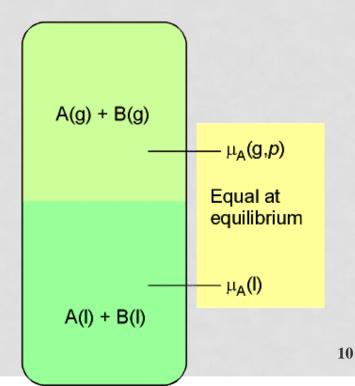


III. CHEMICAL POTENTIAL OF LIQUIDS

- How does μ depend on the composition?
 - Starting point: in equilibrium, μ is equal in the liquid and gas phases:

$$\mu(I) = \mu(g) = \mu^{\theta}(g) + RT \ln\left(\frac{p}{p^{\theta}}\right)$$

 The equality of μ values is true both for the solute (B) and the solvent (A).



IV. MULTICOMPONENT SYSTEMS. THE GIBBS-DUHEM EQUATION

 In a multicomponent system (e.g. mixture), the Gibbs free energy is additive, it can be obtained as the sum of the partial molar Gibb free energies (chemical potentials) of the individual components:

 $G = n_A \mu_A + n_B \mu_B$

- If only the compositions changes (at constant *T* and p): $dG = \mu_A dn_A + \mu_B dn_B + n_A d\mu_A + n_B d\mu_B$
- But from the definition: $dG = \mu_A dn_A + \mu_B dn_B$

Combining the two gives:

$$0 = n_{\rm A} d\mu_{\rm A} + n_{\rm B} d\mu_{\rm B}$$

V. IDEAL MIXTURES. RAOULT'S AND HENRY'S LAW

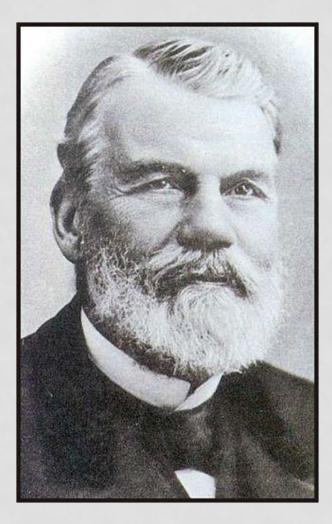
- For pure A (*): $\mu_A^*(I) = \mu_A^*(g) = \mu_A^{\theta} + RT \ln \left(\frac{p_A}{p^{\theta}}\right)$
- A in solution: $\mu_A(I) = \mu_A(g) = \mu_A^{\theta} + RT \ln\left(\frac{p_A}{p^{\theta}}\right)$
- By subtracting the two equations:
 - $\mu_{\mathsf{A}}(I) = \mu_{\mathsf{A}}^{*}(I) + RT \ln\left(\frac{p_{\mathsf{A}}}{p_{\mathsf{A}}^{*}}\right)$
- Based on experimental results, **Raoult** formulated a law (for ,,the mixtures of related substances"): $p_A = x_A p_A^*$
- For **ideal mixtures**, the following can be written (this is also a definition): $\mu_A(I) = \mu_A^*(I) + RT \ln(x_A)$

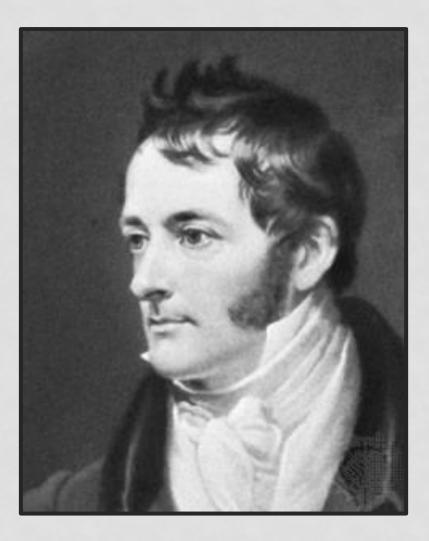
V. IDEAL MIXTURES. RAOULT'S AND HENRY'S LAW

 For and ideal mixture, both components (A and B) follow Raoult's law:

 $p_{\rm A} = x_{\rm A} p_{\rm A}^*$ and $p_{\rm B} = x_{\rm B} p_{\rm B}^*$

- There are so-called **ideal dilute solutions** where the partial pressure of the solute is directly proportional to its molar fraction and the proportion constant instead of the pressure of the solute is another pressure-like constant (K_B): $p_B = x_B K_B$
- This is Henry's law (valid mainly for dissolved gases).
 K_B is called Henry's constant (and is different from the vapor pressure of the pure solute).

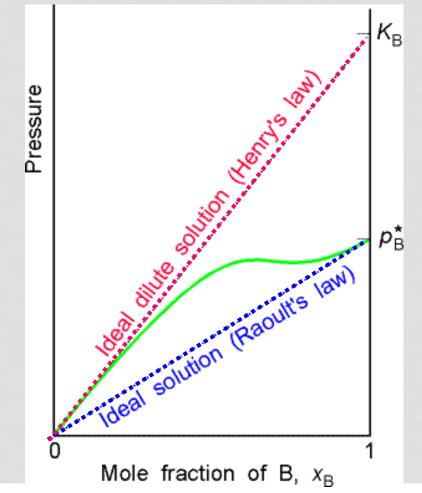




François-Marie Raoult 1830 – 1901 French chemist William Henry 1774 – 1836 English chemist

V. IDEAL MIXTURES. RAOULT'S AND HENRY'S LAW

• Validities of **Raoult's law** and **Henry's law**:



VI. REAL MIXTURES AND SOLUTIONS: ACTIVITY

- For real gases, fugacity (effective pressure, $f = \gamma p$) was used instead of pressure.
- For <u>real mixtures and solutions</u> in order to keep the simple formalism of thermodynamics activity (*a*) and activity coefficient (γ) are used instead of concentration (x_A).

•
$$a_A = \gamma_A x_A$$

- $\mu_{A}(I) = \mu_{A}^{*}(I) + RT \ln a_{A}$
- $\mu_{A} = \mu_{A}^{*} + RT \ln x_{A} + RT \ln \gamma_{A}$

VI. REAL MIXTURES AND SOLUTIONS: ACTIVITY

Standard states (summary):

Component	Standard state	Chemical potential	kLimits
solvent A (Raoult's law)	pure solvent	$\mu_{A} = \mu_{A}^{*} + RT \ln a_{A}$ $a_{A} = p_{A}/p_{A}^{*} \text{ and }$ $a_{A} = \gamma_{A} x_{A}$	$\gamma_A \rightarrow 1$ when $x_A \rightarrow 1$ (pure solvent)
solute B (Henry's law)	pure solute (hypothetic state)	$\mu_{\rm B} = \mu_{\rm B}^{\dagger} + RT \ln a_{\rm B}^{}$ $a_{\rm B} = \rho_{\rm B}^{} / K_{\rm B}^{} \text{ and }$ $a_{\rm B}^{} = \gamma_{\rm B}^{} x_{\rm B}^{}$	$\gamma_{\rm B} \rightarrow 1$ when $x_{\rm B} \rightarrow 0$

THERMODYNAMICS OF ONE-COMPONENT SYSTEMS

- I. Phase diagrams
- II. Phase stability and phase transitions
- III. The use of chemical potential to describe the equilibria in one-component multiphase systems
- IV. The effect of pressure on phase equilibria
- V. The effect of temperature on phase equilibria. The Clapeyron equation
- VI. Liquid-vapor systems: Clausius–Clapeyron equation.
- VII. Ehrenfest classification of phase transitions
- VIII.Surface tension. Curved surface. Capillary action

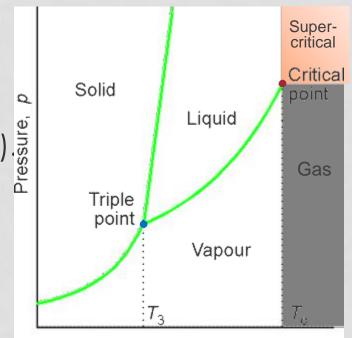
THERMODYNAMICS OF ONE-COMPONENT SYSTEMS

Principles of discussion:

- <u>Equilibrium</u> systems (states) are described and studied. (Phases are stable or phase transitions happen depending on T, p, V and x_i.)
 - In equilibrium, chemical potentials (μ) for all components in all phases are the same.
 - Equilibrium exists only in a **closed system**.
- The <u>changes</u> (phase transitions) are reversible. (Phase transitions between solid phases are often irreversible.)
 - The time needed for a phase transition is not discussed.

I. PHASE DIAGRAMS

- Experimentally defined diagrams. They reflect equilibrium states.
 - Areas: only one phase is stable
 (gas laws apply within such an area).
 Lines (phase boundaries): two
 - -Lines (phase boundaries): two phases are stable, they are in equilibrium.
 - Triple point (T_3) : three phases are stable in equilibrium.

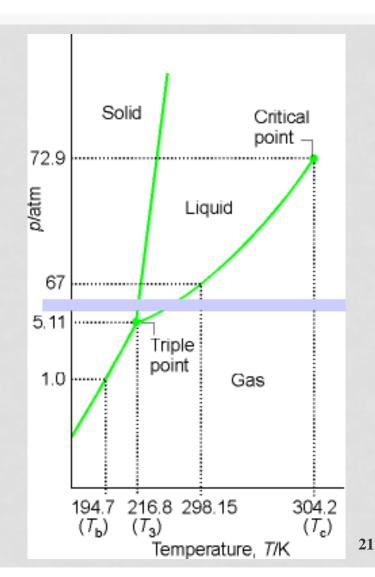


Temperature, T

- Critical point (T_c) : at temperatures higher than T_c , there is the gas phase, at lower temperatures, the vapor phase.
- Supercritical state

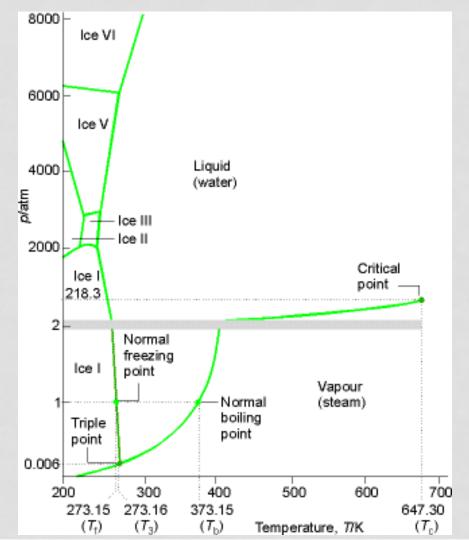
I. PHASE DIAGRAMS

- Phase diagram of CO₂:
 - Since the triple point is above 1 atm, the fluid does not exist at atmospheric pressure.
 - In a CO₂ gas cylinder, there is liquid or highpressure gas.
 - Solid CO₂ sublimates so it is called "dry ice".



I. PHASE DIAGRAMS

- Phase diagram of H_2O :
 - The melting point of ice decreases with increasing pressure! (The density of H₂O(I) is higher and molar volume is lower than for ice.)
 - At high pressures, there are different crystalline forms of ice (II, III, V, VI, VII).



II. PHASE STABILITY AND PHASE TRANSITIONS

Experience:

• These are **physical** (not chemical) transitions.

	→ name	← name	Comment	
l⇔g	evaporation	condensation	Two types of boiling points: • normal: 1 atm • standard: 1 bar	
s ↔ l	melting	freezing	Two types of melting/ freezing points: • normal: 1 atm • standard: 1 bar	
$s \leftrightarrow g$	sublimation	condensation		
$S_{\alpha} \leftrightarrow S_{\beta}$	solid phase transitions		usually slow	

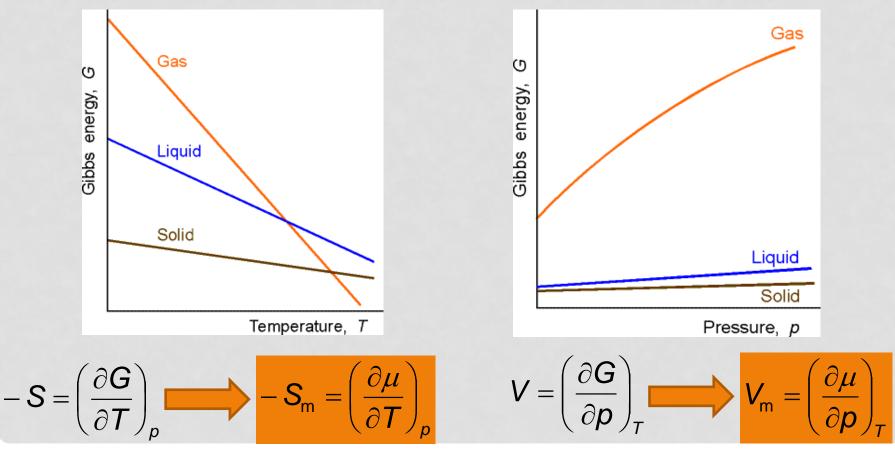
III. THE USE OF CHEMICAL POTENTIAL TO DESCRIBE PHASE TRANSITIONS

- Look at a system with constant p and T, where μ is not the same in all phases, i.e. there is equilibrium in the system.
- If $\mu_1 > \mu_2$, than *dn* amount of substance is transferred from state 1 to state 2 (this can be either physical or chemical transformation).

Initial state	Spontaneous process	Final state	
	$\mu_1 \xrightarrow{dn} \mu_2$		
$\mu_1 > \mu_2$	$-\mu_1 dn + \mu_2 dn$	$\mu_1 = \mu_2$	
	$dG = \left(\mu_2 - \mu_1\right) dn < 0$	dG = 0	

III. THE USE OF CHEMICAL POTENTIAL TO DESCRIBE PHASE TRANSITIONS

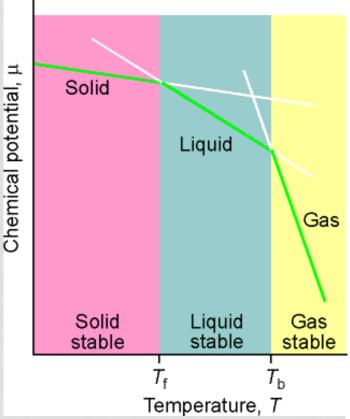
 It is well-known how the chemical potential changes with changing the conditions (T, p):



III. THE USE OF CHEMICAL POTENTIAL TO DESCRIBE PHASE TRANSITIONS

Summarizing the T-dependence of the different states:

- the μ chemical potential decreases with increasing *T*. The slope increases in the solid → liquid → gas direction (since the entropy of the system increases in this order).
- When changing T and p, phase transitions occur (forth and back).
- Phase transitions occur at welldefined temperatures and depend on the pressure p.



IV. EFFECT OF PRESSURE ON PHASE EQUILIBRIA

The effect of p external pressure to the T_{fus} melting point:

• It is known from thermodynamics that the μ chemical potential increases with increasing p:

$$\left(\frac{\partial \mu}{\partial p}\right)_{T} = V_{\rm m} \quad \text{e.g. } d\mu = V_{\rm m} dp$$

• Usually $V_m(l) > V_m(s)$, thus T_{fus} increases with increasing p: at higher pressures, the melting point of a solid is higher.

• Water is an exception: $V_m(I) > V_m(s)$, therefore, the T_{fus} melting point value decreases with increasing pressure. (In everyday life: glaciers, skating)

IV. EFFECT OF PRESSURE ON PHASE EQUILIBRIA

The effect of P external pressure to the p vapor pressure:

- Only the condensed (liquid) phase is affected by P.
- Experimental finding: ΔP external pressure increases the *p* vapor pressure because the molecules are "squeezed" into the vapor phase.
- <u>Explanation</u>: Initially, the chemical potential is the same in the two phases: $\mu(g)^* = \mu(I)^*$
- After ΔP change in the external pressure, the chemical potentials are still the same: $d\mu(g) = d\mu(I), d\mu(g) = V_m(g)dp$ so $d\mu(I) = V_m(I)dP$.
- For a perfect gas: $V_m(g) = RT/p$ i.e. $d\mu(g) = RTdp/p$.
- From integration (p* is the normal vapor pressure): $p = p^* e^{\left(\frac{V_m(l) \Delta P}{RT}\right)}$

V. EFFECT OF TEMPERATURE ON VAPOR PRESSURE. CLAPEYRON EQUATION.

- The two phases are in equilibrium: $\mu_{\alpha}(p,T) = \mu_{\beta}(p,T)$, and remain in equilibrium: $d\mu_{\alpha} = d\mu_{\beta}$
- From thermodynamics, $d\mu = V_m dp S_m dT$ for both phases, so: $V_{\alpha,m}dp S_{\alpha,m}dT = V_{\beta,m}dp S_{\beta,m}dT$.
- Rearrangement of the equations gives the so-called Clapeyron equation:

$$\frac{dp}{dT} = \frac{\Delta S_{\rm m}}{\Delta V_{\rm m}} \Delta$$

S_m: molar entropy change for phase transition V_m: molar volume change for phase transition

- Three cases are discussed:
 a) solid → liquid,
 b) liquid → gas,
 - c) solid \rightarrow gas.

V. EFFECT OF TEMPERATURE ON VAPOR PRESSURE. CLAPEYRON EQUATION.

a) solid \rightarrow liquid (s \rightarrow /) phase transition: **melting**

• The **Clapeyron equation** for melting/freezing:

$$\frac{dp}{dT} = \frac{\Delta_{\rm fus}S}{\Delta_{\rm fus}V} = \frac{\Delta_{\rm fus}H}{\Delta_{\rm fus}V\cdot T}$$

$$dp = \frac{\Delta_{\rm fus} H}{\Delta_{\rm fus} V} \frac{dT}{T}$$

- $\Delta_{fus}H$ is always positive,
- Δ_{fus}V is usually positive (except for water), but also small, so, dp/dT is large and positive.
- Integration between p^* and p, and T^* and T (at constant $\Delta_{fus}H$ -t and $\Delta_{fus}V$):
- Simplification and re-arrangement:
- $p = p^* + \frac{\Delta_{\text{fus}}H}{\Delta_{\text{fus}}V} \ln \frac{T}{T^*}$ $p = p^* + \frac{\Delta_{\text{fus}}H(T T^*)}{\Delta_{\text{fus}}V \cdot T^*}$
- This is the equation of the straight line on the phase diagram. 30

VI. CLAUSIUS-CLAPEYRON EQUATION

b) liquid \rightarrow vapor ($l \rightarrow g$) phase transition: **evaporation**

The Clapeyron equation for evaporation/condensation:

$$\frac{dp}{dT} = \frac{\varDelta_{vap}S}{\varDelta_{vap}V} = \frac{\varDelta_{vap}H}{\varDelta_{vap}V \cdot T}$$

- $\Delta_{vap}H$ is always positive,
- $\Delta_{vap}V$ is always large positive (even for water!), so, dp/dT is positive but smaller than for $s \rightarrow I$. At the same time, $\Delta_{vap}V \approx V_m(g)$.
- For a perfect gas: $V_{\rm m}(g) = RT/p$.
- Summarizing these gives the Clausius-Clapeyron equation:
- Integrated form:

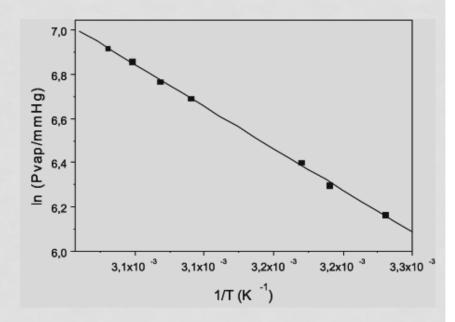
$$\frac{d\ln p}{dT} = \frac{\Delta_{vap}H}{RT^2}$$
$$p = p^* e^{-\left[\frac{\Delta_{vap}H}{R}\left(\frac{1}{T} - \frac{1}{T^*}\right)\right]}$$

VI. CLAUSIUS-CLAPEYRON EQUATION

• For two measured (*p*,*T*) pairs, definite integral gives the value of $\Delta_{vap}H$ as follows:

$$\ln\frac{p_2}{p_1} = -\frac{\Delta_{vap}H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

• A better solution is to measure many (p,T) data pairs. Inp plotted versus 1/T gives a straight line with a slope of $-\Delta_{vap}H/R$.



VI. CLAUSIUS-CLAPEYRON EQUATION

c) solid \rightarrow vapor (s \rightarrow g) phase transition: **sublimation**

- Sublimation is very similar to evaporation.
- Clausius–Clapeyron equation for sublimation:

$$\frac{d \ln p}{dT} = \frac{\Delta_{\rm sub} H}{RT^2}$$

• Integrated form:
$$p = p * e^{-\left\lfloor \frac{\Delta_{sub}H}{R} \left(\frac{1}{T} - \frac{1}{T^*} \right) \right\rfloor}$$

• For two measured (*p*,*T*) pairs, definite integral gives the value of $\Delta_{vap}H$ as follows: $\ln \frac{p_2}{p_1} = -\frac{\Delta_{sub}H}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$

VII. EHRENFEST CLASSIFICATION OF PHASE TRANSITIONS

First-order phase transitions:

- the first derivative of chemical potential with respect to temperature (dµ/dT) is discontinuous
 - e.g. $g \rightarrow l, l \rightarrow s, s \rightarrow g, \dots$

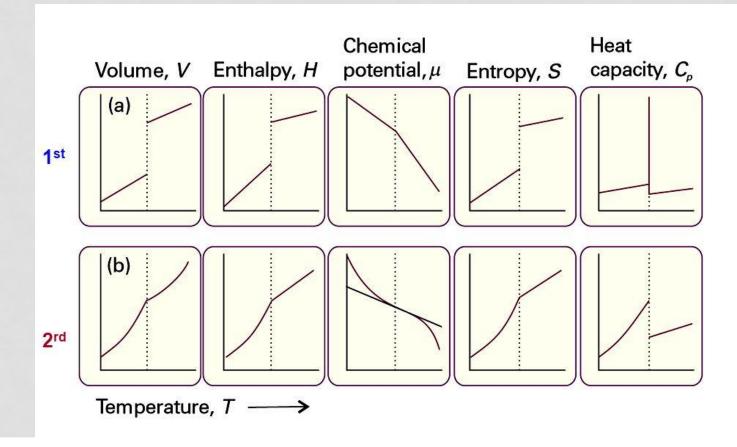
Second-order phase transitions:

- $\Delta H = 0, \Delta S = 0, \Delta V = 0$
- $d\mu/dT$ is continuous, but $d^2\mu/dT^2$ is discontinuous!
 - e.g. conducting-superconducting transition in metals, order-disorder transitions in alloys, fluid-superfluid transition for He

Paul Ehrenfest 1880 – 1933 Austrian and Dutch theoretical physicist

VII. EHRENFEST CLASSIFICATION OF PHASE TRANSITIONS

• Changes in thermodynamic properties accompanying phase transitions:



• Liquids have a tendency to assume a shape that minimizes the surface \rightarrow spherical **drop**s

• Reason:

- The work dw necessary to increase the surface by $d\sigma$ is calculated as: $dw = \gamma d\sigma$ (γ : surface tension, $J m^{-2} \equiv N m^{-1}$)
- At constant T and V $dw = dA = \gamma d\sigma$, and because dA < 0 then $d\sigma < 0$.

• **Bubble:** a region filled with vapor (and air) enclosed within a thin liquid film.

double surface!

• Cavity: a region filled with vapor within a liquid.

Drop:

Surface Tension of some Liquids

Substance	Т	γ (mNm ⁻¹)	Substance	Т	$\gamma (mNm^{-1})$
Water	10°C	74.23	Mercury	25°C	485.48
25°C 50°C	25°C	71.99	Phenol	50°C	38.20
	50°C	67.94	Benzene	25°C	28.22
	75°C	63.57	Toluene	25°C	27.93
	100°C	58.91	Dichloromethane	25°C	27.20
Argon	90 K	11.90	<i>n</i> -pentane	25°C	15.49
Methanol	25°C	22.07	<i>n</i> -hexane	25°C	17.89
Ethanol	10°C	23.22	<i>n</i> -heptane	25°C	19.65
Lotter of	25°C	21.97	<i>n</i> -octane	10°C	22.57
	50°C	19.89		25°C	21.14
1-propanol	25°C	23.32		50°C	18.77
1-butanol	25°C	24.93		75°C	16.39
2-butanol	25°C	22.54		100°C	14.01
Acetone	25°C	23.46	Formamide	25°C	57.03

Table 2.1: Surface tensions γ of some liquids at different temperatures T.

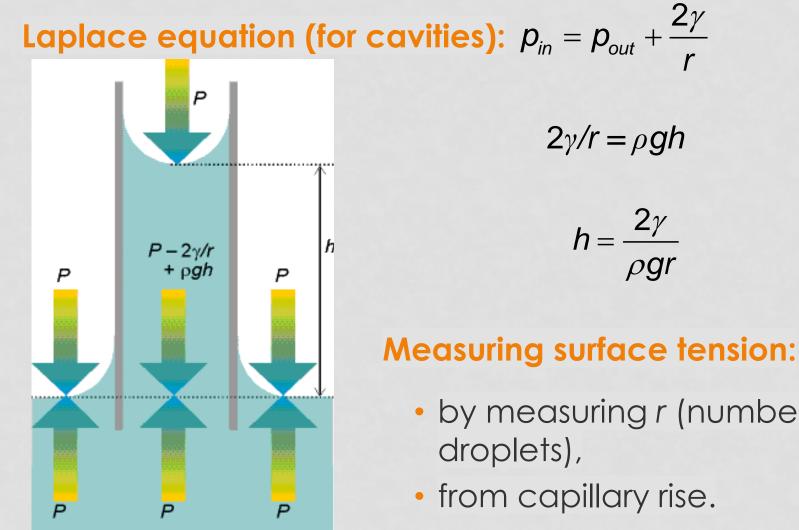
Laplace equation (for cavities):
$$p_{in} = p_{out} + \frac{2\gamma}{r}$$

 The pressure is always larger in the internal part of a curved surface (on the concave side of the surface, within the cavity) than outside.

Kelvin equation (for droplets):

 the vapor pressure of a liquid depends on the external pressure:

$$\boldsymbol{\rho} = \boldsymbol{\rho}^* \boldsymbol{e}^{\left(\frac{\boldsymbol{V}_m(\boldsymbol{I})\Delta\boldsymbol{P}}{\boldsymbol{R}\boldsymbol{T}}\right)} = \boldsymbol{\rho}^* \boldsymbol{e}^{\left(\frac{2\gamma \boldsymbol{V}_m}{\boldsymbol{R}\boldsymbol{T}\boldsymbol{r}}\right)}$$



- by measuring r (number of

• Rise of liquid level due to capillary action: $h = \frac{2\gamma}{\rho gr}$

