Thermodynamic equilibrium in reactive systems

- I. Equilibrium in chemical reactions concepts and conditions
- II. Equilibrium constant
- III. The concept of reaction Gibbs energy, exergonic and endergonic processes
- IV. Standard reaction Gibbs energy and its connection with chemical potentials
- v. Connection between the formal and thermodynamic description of an equilibrium
- **VI.** Other expressions for the equilibrium constant

I. Equilibrium in chemical reactions – concepts and conditions

Application of thermodynamics for chemical changes (reactive systems)

So Three important questions:

- the <u>direction</u>: What is produced? What is consumed?
- the <u>quantity</u>: Where does the reaction *"stop"*?
 Where does the equilibrium lie?
- the <u>course</u> of the change in time and space: reaction kinetics and reaction mechanism.

I. Equilibrium in chemical reactions – concepts and conditions

- ∞ The <u>"direction</u>": the spontaneous process under the given conditions (*T*, *p*, *x_i*) (the reverse may be *forced* externally). Chemically: What is produced? What is consumed?
- For quantification: the extent of reaction is important.
 - $\circ 0 < \zeta < 1$ small Greek XI letter

I. Equilibrium in chemical reactions – concepts and conditions

- $\xi = 0$ at the beginning of the reaction, only the reactants are present
- $\xi = 1$ if the reaction is complete and only the products are present
- Can also be obtained from the studying the individual substances: the ratio of the amount of substance n_j consumed or produced in the reaction and the stoichiometric v_j coefficient.

\mathbb{II}_{\circ} Equilibrium constant

∞ Based on the measurement of equilibrium concentrations in numerous systems (Guldberg and Waage, 1863):

∞ The stoichiometry of the process: $aA + bB \rightleftharpoons cC + dD$

$$K = \frac{\left[C\right]_{\text{equilibrium}}^{c}\left[D\right]_{\text{equilibrium}}^{d}}{\left[A\right]_{\text{equilibrium}}^{a}\left[B\right]_{\text{equilibrium}}^{b}} \qquad K = \frac{\left[C\right]_{e}^{\nu_{c}}\left[D\right]_{e}^{\nu_{b}}}{\left[A\right]_{e}^{\nu_{A}}\left[B\right]_{e}^{\nu_{b}}} \quad \text{(in general)}$$

no Obviously:

- if the value of K is large, the equilibrium is shifted to the right, the conversion is high, ξ is close to one 1,
- if the value of K is small, the equilibrium is shifted to the left, the conversion is low, ξ is close to 0.

\mathbb{II}_{\circ} Equilibrium constant

- ∞ The simple observation-based rule was...
 - backed up by general thermodynamic laws,
 - connected precisely to other thermodynamic data of the reaction,
 - complemented by the introduction of activities to deal with "deviations" in real systems,
 - was connected to electrochemistry by setting up an exact equation between K and the cell potential of the reaction carried out in an electrochemical cell.

\mathbb{III} . The concept of reaction Gibbs energy

 ∞ Simple example react ion: A \Rightarrow B (e.g. isomerization)

- change in the amount of substance of A: $dn_A = -d\xi$
- change in the amount of substance of B: $dn_{\rm B} = +d\xi$
- change in G for the entire system: $dG = \mu_A dn_A + \mu_B dn_B = -\mu_A d\xi + \mu_B d\xi = (\mu_B - \mu_A) d\xi$
- A rearrangement yields the $\Delta_r G$ reaction Gibbs energy:

$$\left(\frac{\partial G}{\partial \xi}\right)_{p,T} = \mu_{\rm B} - \mu_{\rm A} = \Delta_{\rm r} G$$

• This property controls the advance of the process.

\mathbb{III} . The concept of reaction Gibbs energy

∞ Thermodynamics (universal experience):

- G decreases (*p*,*T* are constant) in spontaneous processes, this indicates the direction of spontaneous changes relative to the initial composition.
- Initial composition:
 - reactants only
 - products only
 - both reactants and products
- Interpretation of $\Delta_r G$: the slope of the curve shown on right in a given point.

IV. The connection between standard reaction Gibbs energy and chemical potentials

$\mathfrak{S} \Delta_{r}G : reaction Gibbs energy$

- the slope of $G = f(\xi)$ at a given composition.
- The change in G if 1 mol of reactant is transformed into 1 mol of product without a change in the composition (large system). The difference in the chemical potentials:

$$\Delta_{\rm r} G = \mu_{\rm B} - \mu_{\rm A} = \left(\frac{\partial G}{\partial \xi}\right)_{p,T}$$

- $\sum \Delta_{\rm r} G^{\theta}$: standard reaction Gibbs energy
 - The change in G if 1 mol of reactant in the standard state is transformed to 1 mol of product the standard state. The difference in standard chemical potentials:

$$\Delta_{\rm r}G^{\rm \theta} = \mu_{\rm B}^{\rm \theta} - \mu_{\rm A}^{\rm \theta} = \Delta_{\rm f}G^{\rm \theta}({\rm B}) - \Delta_{\rm f}G^{\rm \theta}({\rm A})$$

\mathbbm{W} Connection between the formal and thermodynamic description of an equilibrium

 ∞ A simple example: A(g) \rightleftharpoons B(g) equilibrium gas reaction.

So The formal description: $K_p = \frac{p_{B, equilibrium}}{p_{A, equilibrium}}$ So Thermodynamic description:

$$\Delta_{r}G = \mu_{B} - \mu_{A}$$

$$= \left(\mu_{B}^{\theta} + RT \ln \frac{p_{B}}{p^{\theta}}\right) - \left(\mu_{A}^{\theta} + RT \ln \frac{p_{A}}{p^{\theta}}\right)$$

$$= \Delta_{r}G^{\theta} + RT \ln \frac{p_{B}}{p_{A}}$$

• $\Delta_r G^{\theta} = \mu_B^{\theta} - \mu_A^{\theta}$ (the difference in standard chemical potentials) • Let $p_B/p_A = Q_p$ called reaction quotient:

$$\Delta_{\rm r}G = \Delta_{\rm r}G^{\rm \theta} + RT \ln Q_{\rm p}$$

W Connection between the formal and thermodynamic description of an equilibrium

- $\Delta_r G = \Delta_r G^{\theta} + RT \ln Q_{\rho}$ equation in equilibrium:
 - If $\Delta_r G = 0$, Q_p is identical to the equilibrium constant K_p :

$$Q_{p, \text{ equilibrium}} = K_p = \frac{p_{\text{B, equilibrium}}}{p_{\text{A, equilibrium}}}$$

- Result: $\Delta_r G^{\theta} = -RT \ln K_{\rho}$
- The negative sign is important!
 - negative $\Delta_r G^{\theta} \rightarrow K$ is higher than 1 (product-dominance)
 - positive $\Delta_r G^{\theta} \rightarrow K$ is lower than 1 (reactant-dominance)

\mathbb{VI} . Other expressions for the equilibrium constant

In gas phase (fugacity or pressure):

$$K = \prod_{J} \left(\frac{f_{J}}{p^{\theta}} \right)^{\nu_{J}}$$
• For an ideal gas: $K_{p} = \prod_{J} \left(\frac{p_{J}}{p^{\theta}} \right)^{\nu_{J}}$

∞ Based on molality (or mole fractions) :

$$\boldsymbol{K} = \left(\frac{\boldsymbol{a}_{\mathrm{C}}\boldsymbol{a}_{\mathrm{D}}}{\boldsymbol{a}_{\mathrm{A}}\boldsymbol{a}_{\mathrm{B}}}\right)^{\nu} = \left(\frac{\gamma_{\mathrm{C}}\gamma_{\mathrm{D}}}{\gamma_{\mathrm{A}}\gamma_{\mathrm{B}}}\right)^{\nu} \times \left(\frac{\boldsymbol{m}_{\mathrm{C}}\boldsymbol{m}_{\mathrm{D}}}{\boldsymbol{m}_{\mathrm{A}}\boldsymbol{m}_{\mathrm{B}}}\right)^{\nu} = \boldsymbol{K}_{\gamma}\boldsymbol{K}_{m}$$

Influence of external conditions on the chemical equilibrium

- I. The dynamic nature of equilibrium. Le Chatelier's principle.
- II. The influence of **pressure** change on the equilibrium constant and equilibrium composition.
- III. The influence of <u>temperature change</u> on the equilibrium constant and equilibrium composition (van't Hoff equation).
- IV. The influence of the <u>addition or removal of a</u> <u>reactant or product</u> on the equilibrium composition.
- v. Practical applications.
- VI. Equilibria in biological systems.

I. The dynamic nature of equilibrium. Le Chatelier's principle.

So Le Chatelier' principle: the response of the system to external stress.

A system in equilibrium always responds to relieve the external stress.

- An increase in (external) pressure is relieved by a decrease of internal pressure (decrease in number of moles).
- An increase in (external) temperature is relieved by a decrease in internal temperature (endothermic direction).
- The addition of a substance is relieved by its consumption.

(b)

\mathbb{II} . Influence of pressure change on the equilibrium constant and the equilibrium composition

- **In gas reactions,** <u>equilibrium constant</u> *K* does no depend on pressure *p* as $\Delta_r G^{\theta}$ is pressure-independent (actually defined at a standard pressure): $(\partial K / \partial p)_T = 0$
- So The equilibrium composition is changed by a pressure change following Le Chatelier's principle – if the gas reaction involves a change in volume...

III. Influence of temperature on the equilibrium constant and the equilibrium composition

- So Qualitatively (Le Chatelier's principle): an increase in T shifts the system in the endothermic direction (and vice versa).
 - Endothermic reaction: increase in $T \rightarrow$ more products
 - Exothermic reactions: increase in $T \rightarrow$ more reactants
- ∞ Influence of *T* on the equilibrium:
 - the value of *K* changes
 - therefore, the equilibrium composition also changes.

po Quantitative relationship: van't Hoff equation.

III. Influence of temperature on the equilibrium constant and the equilibrium composition

⁵⁰ The van't Hoff equation:

<i>d</i> ln <i>K</i>	 ΔH^{θ}
d(1/T)	 R

The van't Hoff equation is analogous to the Clausius – Clapeyron equation: both describe equilibria!

III. Influence of temperature on the equilibrium constant and the equilibrium composition

 ∞ Determination ΔH^{θ} by integration:

$$\circ \ln \frac{K_2}{K_1} = -\frac{\Delta H^{\theta}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

- Condition: ΔH^{θ} should be (roughly) constant in the $T_2 - T_1$ range applied.
- Measurements are usually made at more than two temperatures and K is obtained from a graph:

IV. Influence of substance addition or removal on the equilibrium

- A change in the x_j concentration of reactants or products only <u>influences the equilibrium</u> <u>composition</u>, but <u>not the value of K</u>.
- ∞ Le Chatelier's principle (*K* remains unchanged):
 - addition of more reactants will result in the formation of more product and vice versa,
 - removal of the product will result in the formation of more product form the reactant and vice versa.

V. Practical applications

∞ The equilibrium can be shifted in a desired direction:

- by a suitable change in *T* and *p*;
- o adding the reactant,
- removing the desired product e.g. gas removal, precipitation, product extraction etc.,
- complexing the desired product by an excess of suitable complexing agent: "masking".
- Important: A catalyst does not influence the equilibrium composition, only the time necessary to reach it.

V. Practical applications

n Ammonia synthesis:

• $N_2(g) + 3H_2(g) \implies 2 NH_3(g)$ $\Delta H^{\theta} = -92.2 \text{ kJ mol}^{-1}$

∞ Ammonia formation is favored by:

- high pressure = high initial concentrations of N_2 and H_2 ,
- low temperature.
- Problem: at low temperature, the rate of the reaction is also low (kinetics!), so the reaction takes too long.
- INDUSTRIAL PROCESS: moderately low temperature (450 °C) and very high pressure (250 bar)
 - compromise that ensures reasonable conversion and reaction time at the same time.

V. Practical applications

n Ammonia synthesis:

- Living systems are powered by energy in food. Part of this energy is used as it is produced, but some of them is stored for later use.
- ∞ A complicated mechanism works in which there are energy storing and energy utilizing steps.
- Important: energy stored in exergonic reaction my drive other, endergonic processes.
- ∞ It is practicable to use a **biological standard state**.

So Biological standard state: pH = 7

- $a_{H+} = 1 (pH = 0)$ would be too acidic.
- Designation: ⁰
- ∞ Example: $A + v H^+(aq) \rightarrow P$

$$\Delta_{\rm r}G = \mu_{\rm P} - \mu_{\rm A} - v \mu_{\rm H+}$$

After some derivations:

$$\Delta_{\rm r}G^{\rm 0} = \Delta_{\rm r}G^{\rm 0} + 7 \cdot vRT \ln 10$$

• (The two standard $\Delta_r G$ values are only different if H⁺ participates in the process.)

- Endergonic reactions: do not proceed spontaneously (protein biosynthesis, muscle contractions, vision etc.)
- Exergonic reactions: energy is stored in adenosine triphosphate (ATP) molecules. Its hydrolysis is exergonic and can drive other, endergonic reactions.

ATP +
$$H_2O \rightarrow ADP + P_i^- + H^+$$
 $\Delta_rG^0 = -30 \text{ kJ/mol}$
 $\Delta_rH^0 = -20 \text{ kJ/mol},$
 $\Delta_rS^0 = +34 \text{ J/(mol K)}$

 Where does the energy of ATP (hydrolizable phosphate ester bonds) come from? Its origin is the oxidation (burning) of food (carbohydrate, fat) in complicated, coupled processes.

ATP (adenosine-5'-triphosphate): the common unit of energy transfer in biological systems

Anaerobic cell metabolism (in the absence of oxygen).

- Insufficient O₂ (at birth; long-distance running): glucose + 2 P⁻, + 2 ADP \rightarrow 2 lactate⁻ + 2 ATP + 2 H₂O
- so Source of energy: partial oxidation of glucose to lactate.
- ∞ Exergonic process: $\Delta_r G^0 = -218$ kJ/mol.
- so Two molecules of ADP converted to ATP: $2 \times (+30)$.
- $\Delta_r G^0 = -218 + 2 \times 30 = -158 \text{ kJ/mol}$ is available.
 - Food is both a source of direct energy and energy stored for later use by ADP \rightarrow ATP transformation.
 - Poor efficiency. [Aerobic respiration is better, the burning of glucose in total oxidation yields –2880 kJ/mol.]

Aerobic cell metabolism (with oxygen).

- Energy source: the total oxidation of glucose to carbon dioxide and water: $\Delta_r G^0 = -2880 \text{ kJ/mol}$ (CO₂ is exhaled)
- Schematically (as the mechanism is very complicated):

glucose + O_2 + 38 ADP $\rightarrow CO_2$ + H_2O + 38 ATP

∞ For 38 ATP, 38×30 = 1140 kJ needed. Available 1740 kJ!

- To produce sucrose from glucose and fructose ($\Delta_r G^0 = 23 \text{ kJ/mol}$), one molecule of ATP (-30 kJ) is sufficient.
- For protein synthesis, a lot of ATP is needed: a single peptide bond is $\Delta_r G^0 = 17 \text{ kJ/mol}$ endergonic, but its indirect biosynthesis needs 3 molecules of ATP. In myoglobin (relatively small protein) ~150 peptide bonds require 450 molecules of ATP, i.e. 12 molecules of glucose in aerobic oxidation.