
• Transport processes

• Diffusion: transport of matter

• Thermal conductivity: transport of energy

• Viscosity: transport of momentum

• Ionic conduction: transport of ions/charge

• Interpretation of transport processes with the kinetic theory 
of gases

• Effusion

• Barometric formula
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Transport phenomena
Phenomenon gradient transport

Diffusion concentration matter

Thermal conduction temperature energy

Viscosity velocity momentum

Ionic conduction electronic potential charge

 Transport processes can be found in all three phases (with some 
exceptions.

 In transport processes, only the molecules are in motion, the 
system and its macroscopic parts are not.

 There is no convection or mixing.
2



 Diffusion: 

 particle transport

 Thermal conduction:

 energy transport

 Electrolytic conduction:

 charge transport

 Viscosity:

 momentum transport 3
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Transport phenomena
Common concepts in transport phenomena:

 Gradient: one of the parameters (T, c, E ...) is 
inhomogeneously distributed in space, at least in one 
direction.

 Flux: the quantity of a given property (m, v ...) passing 
through a given area in a given time interval divided by the 
area and the duration of the interval.

 Symbol: J(matter, charge …).



 N: number density of particles with units number per cubic meter
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Diffusion: transport of matter (molecular level)

 Fick’s first law of diffusion: 
diffusion will be faster when the 
concentration varies steeply with 
position than when the 
concentration is nearly uniform.

 Different concentrations mean 
different chemical potentials (since 
μ depends on c),

 Practical importance: motion of 
matter in soils.

[J]: m-2 s-1 flux of matter
[D]: m2 s-1 diffusion coefficient
dN/dz: m-4 concentration gradient
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Thermal conduction: transport of energy

 Energy migrates down a temperature gradient.

 The connection between flux and gradient is similar to 
Fick’s first law of diffusion.

 Good thermal conductors: metals (Ag, Cu, Au, Al), 
marble, diamond

 Good thermal insulators: vacuum, CO2, plastic, wood 

 Practical importance: thermal insulation of houses.

 There is molecular heat conduction, macroscopic 
(convective) heat flow and heat radiation.
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[J]: J m-2 s-1 flux of energy
[κ]: J K-1 m-1 s-1 coefficient of thermal 

conductivity
dT/dz: K m-1 temperature gradient

6



Viscosity: transport of momentum

 Because the retarding effect 
depends on the transfer of the x-
component of linear momentum 
into the layer of interest,

 the viscosity depends on the flux 
of this x-component in the z-
direction.

[J]: kg m-1 s-2 flux of momentum
[η]: kg m-1 s-1 coefficient of viscosity

(or simply ‘the viscosity’)
dvx/dz: s-1 velocity gradient
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Data for gases:
 diffusion coefficients: 10-4 m2 s-1

 coefficients of thermal conductivity: 0.01-0.1 J K-1 m-1 s-1

 coefficients of viscosity: 1-210-5 kg m-1 s-1
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Kinetic theory of gases:

 Molecules in the gaseous phase (macroscopic equilibrium).

 The gas particles (with m mass) move continuously in a 
straight line with constant speed and

 they collide. The collisions are perfectly elastic (there is no 
change in the shape of the molecule).

 The gas molecules have „only” m mass and v velocity, so, 
momentum (mv) and kinetic energy (½ mv2).
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 Mean free path:

 σ: collision cross-section

 p and T have opposite effects on λ.

 Mean speed of a particle with m mass (i.e. M = NA·m
molar mass):

 The mean speed is directly proportional with T1/2 and

 inversely proportional to M1/2.

 Collision frequency:

 Zw: the number of collisions made by one molecule divided 
by the time interval during which the collisions are counted
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Kinetic theory of gases - results:



diffusion 
coefficient:

coefficient of 
thermal 
conductivity:

coefficient of 
viscosity:

The transport constants from 
the kinetic theory of gases:
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Time and diffusion: the diffusion equation
(Fick’s 2nd law)
• At a given position x, the concentrations change is given 

as:

• Some solutions of the diffusion equation:

• An initial value and two boundary conditions are needed:

• At t = 0, the concentration is N0 in the x, y plane

• No reactions in the system 

• Concentration are always finite.

• Sugar at the bottom of the tea cup: diffusion in space
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Time and diffusion: the diffusion equation
(Fick’s 2nd law)
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 A solution of the diffusion 
equation:
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 Effusion: gas slowly escapes through a small hole 
into an external vacuum (a tire becomes flat slowly if 
the hole is small [Vacuum is relative:  the essence is 
the unidirectional diffusion.]

 Graham’s law of effusion: the rate of effusion is 
inversely proportional to the square root of the molar 
mass (an old determination method for molar mass):

Effusion:
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http://lenteg.ttk.pte.hu/ScienceBits/blog130827.html


Inhomogeneity in gas pressure 
in an external force field:
 In a force field (e.g. gravity field of Earth), the 

pressure is not uniform (e.g. atmosphere): there is an 
exponential decrease in pressure with the elevation. 
This is described by the barometric formula:

 The phenomenon can be observed in an artificial 
„gravity” field (centrifuge) as well, and the distribution 
(which depend on the molar mass) can be used in 
separating different isotopes.
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