#### **Molecules in motion**

#### • Transport processes

- Diffusion: transport of matter
- Thermal conductivity: transport of energy
- Viscosity: transport of momentum
- Ionic conduction: transport of ions/charge
- Interpretation of transport processes with the kinetic theory of gases
- Effusion
- Barometric formula

#### **Transport phenomena**

| Phenomenon         | gradient             | transport |
|--------------------|----------------------|-----------|
| Diffusion          | concentration        | matter    |
| Thermal conduction | temperature          | energy    |
| Viscosity          | velocity             | momentum  |
| Ionic conduction   | electronic potential | charge    |

- Transport processes can be found in all three phases (with some exceptions.
- In transport processes, only the molecules are in motion, the system and its macroscopic parts are not.
- There is no convection or mixing.

### Transport phenomena Diffusion:

- particle transport
- Thermal conduction:
  - energy transport



- Viscosity:
  - momentum transport







(d)





#### **Transport phenomena**

Common concepts in transport phenomena:

- **Gradient**: one of the parameters (*T*, *c*, *E* ...) is inhomogeneously distributed in space, at least in one direction.
- Flux: the quantity of a given property (*m*, *v* ...) passing through a given area in a given time interval divided by the area and the duration of the interval.
  - Symbol: *J*(matter, charge ...).
  - $J(\text{matter}) \propto \frac{\mathrm{d}N}{\mathrm{d}z}$
  - N: number density of particles with units number per cubic meter

Diffusion: transport of matter (molecular level)

 $J(\text{matter}) = -D\frac{\mathrm{d}N}{\mathrm{d}z}$ 

 $\begin{array}{ll} [J]: & m^{-2} s^{-1} \\ [D]: & m^{2} s^{-1} \\ dN/dz: & m^{-4} \end{array}$ 

- Fick's first law of diffusion: diffusion will be faster when the concentration varies steeply with position than when the concentration is nearly uniform.
- Different concentrations mean different chemical potentials (since μ depends on c),
- Practical importance: motion of matter in soils.

flux of matter diffusion coefficient concentration gradient



**Thermal conduction: transport of energy** $J(energy) = -\kappa \frac{dT}{dz}$  $[J]: J m^{-2} s^{-1}$ flux of energy $[\kappa]: J K^{-1} m^{-1} s^{-1}$ coefficient of thermal<br/>conductivity $dT/dz: K m^{-1}$ temperature gradient

- Energy migrates down a temperature gradient.
- The connection between flux and gradient is similar to Fick's first law of diffusion.
- Good thermal conductors: metals (Ag, Cu, Au, Al), marble, diamond
- Good thermal insulators: vacuum, CO2, plastic, wood
- Practical importance: thermal insulation of houses.
- There is molecular heat conduction, macroscopic (convective) heat flow and heat radiation.

Viscosity: transport of momentum

 $J(\text{momentum})_{z} = -\eta \frac{\mathrm{d}v_{x}}{\mathrm{d}z} \begin{bmatrix} J \end{bmatrix}: \quad \text{kg m}^{-1} \, \mathrm{s}^{-2} \quad \text{flux of momentum} \\ \text{kg m}^{-1} \, \mathrm{s}^{-1} \quad \text{coefficient of viscosity} \end{bmatrix}$ (or simply 'the viscosity') velocity gradient

#### $dv_x/dz$ : s<sup>-1</sup>

- Because the retarding effect depends on the transfer of the *x*component of linear momentum into the layer of interest,
- the viscosity depends on the flux of this *x*-component in the *z*direction.



#### **Data for gases:**

• diffusion coefficients:

 $10^{-4} \text{ m}^2 \text{ s}^{-1}$ 

- coefficients of thermal conductivity: 0.01-0.1 J K<sup>-1</sup> m<sup>-1</sup> s<sup>-1</sup>
- coefficients of viscosity:

1-2×10<sup>-5</sup> kg m<sup>-1</sup> s<sup>-1</sup>

|                     | Density<br>(g cm <sup>-3</sup> ) | Diffusion<br>(cm <sup>2</sup> s <sup>-1</sup> ) | Viscosity<br>(g cm <sup>-1</sup> s <sup>-1</sup> ) |
|---------------------|----------------------------------|-------------------------------------------------|----------------------------------------------------|
| Gas                 | 10-3                             | 10-1                                            | 10-4                                               |
| Supercritical fluid | 10 <sup>-1</sup> – 1             | 10 <sup>-4</sup> – 10 <sup>-3</sup>             | $10^{-4} - 10^{-3}$                                |
| Liquid              | 1 <u>1</u>                       | < 10-5                                          | 10-2                                               |

#### **Kinetic theory of gases:**

- Molecules in the gaseous phase (macroscopic equilibrium).
  - The gas particles (with *m* mass) move continuously in a straight line with constant speed and
  - they collide. The collisions are perfectly elastic (there is no change in the shape of the molecule).
- The gas molecules have "only" *m* mass and *v* velocity, so, momentum (*mv*) and kinetic energy (½ *mv*<sup>2</sup>).

### **Kinetic theory of gases - results:**

- Mean free path:  $\lambda = \frac{k_B T}{\sqrt{2}\sigma p}$   $\sigma$ : collision cross-section
  - *p* and *T* have opposite effects on  $\lambda$ .
- Mean speed of a particle with *m* mass (*i.e.*  $M = N_A \cdot m$  $(\mathbf{0}\mathbf{1} \mathbf{T})^{1/2} (\mathbf{0}\mathbf{D}\mathbf{T})^{1/2}$ molar mass):

$$\overline{c} = \left(\frac{8k_BT}{\pi m}\right) = \left(\frac{8RT}{\pi M}\right)$$

- The mean speed is directly proportional with  $T^{1/2}$  and
- inversely proportional to  $M^{1/2}$ .
- **Collision frequency**:  $Z_w = \frac{P}{(2\pi mk_B T)^{1/2}}$ 
  - $Z_{u}$ : the number of collisions made by one molecule divided by the time interval during which the collisions are counted

# The transport constants from the kinetic theory of gases:

Short flight (survives) Long flight (collides in flight)

| diffusion<br>coefficient:                  | $D = \frac{1}{3}\lambda \overline{c}$                   |
|--------------------------------------------|---------------------------------------------------------|
| coefficient of<br>thermal<br>conductivity: | $\kappa = \frac{1}{3} \lambda \overline{c} C_{V,m} [A]$ |
| coefficient of viscosity:                  | $\eta = \frac{1}{3}\lambda \overline{c}mN$              |

## Time and diffusion: the diffusion equation (Fick's 2nd law)

At a given position x, the concentrations change is given as:

 <sup>∂</sup>c
 <sup>∂<sup>2</sup>c
 <sup>∂<sup>2</sup>c

</sup></sup>

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$$

- <u>Some solutions of the diffusion equation</u>:
- An initial value and two boundary conditions are needed:
  - At t = 0, the concentration is  $N_0$  in the x, y plane
  - No reactions in the system
  - Concentration are always finite.
  - Sugar at the bottom of the tea cup: diffusion in space

## Time and diffusion: the diffusion equation (Fick's 2nd law)



• A solution of the diffusion equation:

$$c = \frac{n_0 e^{-\frac{x^2}{4Dt}}}{A(\pi Dt)^{1/2}}$$



#### **Effusion:**

- Effusion: gas slowly escapes through a small hole into an external vacuum (a tire becomes flat slowly if the hole is small [Vacuum is relative: the essence is the unidirectional diffusion.]
- **Graham's law of effusion**: the rate of effusion is inversely proportional to the square root of the molar mass (an old determination method for molar mass):

rate of effusion 
$$\propto \frac{1}{\sqrt{M}}$$

#### Inhomogeneity in gas pressure in an external force field:

• In a force field (e.g. gravity field of Earth), the pressure is not uniform (e.g. atmosphere): there is an exponential decrease in pressure with the elevation. This is described by the **barometric formula**:

$$p = p_0 e^{-\frac{Mgh}{RT}}$$

 The phenomenon can be observed in an artificial "gravity" field (centrifuge) as well, and the distribution (which depend on the molar mass) can be used in separating different isotopes.