REACTION KINETICS AND REACTION MECHANISMS

Different levels of dealing with reaction rates:

I. REACTION KINETICS macroscopic level – mathematical description

II. REACTION MECHANISMS molecular level—interpretation

III. THEORIES OF REACTION RATES Arrhenius equation, collision and activated complex theories

INTRODUCTION

History of reaction kinetics:

- 183X Berzelius: catalysis
- 1850 Wilhelmy: sugar inversion measurements
- 188X van't Hoff: rate equations
- 189X Arrhenius: a k = f(T) equation
- 1918 McLewis: collision theory
- 193X Eyring-Polányi: activated complex theory
- more than ten Nobel prizes awarded for achievements in reaction kinetics

I. REACTION KINETICS

- Before kinetic investigations, one should clarify:
 - the stoichiometric equation,
 - the identity of reactants (A, B, ...) and products (P, ...),
 - possibility of an intermediate (I) [vs. activated complex].
- After the investigation of reaction kinetics, taking the stoichiometry and the rate equation into account, a mechanism is postulated.

Concept of reaction rate

- Change in concentration/time (closed system, constant V)
 - Generally: $v = \frac{1}{v_J} \cdot \frac{d[J]}{dt}$, where v_J is the stoichiometric coefficient of substance J
 - For reaction A + 2B \rightarrow P: $v = -\frac{d[A]}{dt} = -\frac{1}{2} \cdot \frac{d[B]}{dt} = \frac{d[P]}{dt}$
 - Simplified formalism: $v = d\xi/dt$, where ξ is the extent of reaction: $0 < \xi < 1$
 - Unit of rate (v): mol dm⁻³ s⁻¹

Visualizing the reaction rate – graphical representation

• Rate equation:
$$v = \frac{1}{v_J} \cdot \frac{d[J]}{dt}$$

- reactant: dc/dt negative
- product: dc/dt positive
 The rate of reaction at time t (or concentration c) is determined based on the slopes of the experimentally measured curves:

Rate equation

- $v = k[A]^{\alpha}[B]^{\beta}[C]^{\gamma}...$
 - v: rate of reaction
 - k: rate constant (or rate coefficient)
 - α, β, γ : order of reaction
 - $\alpha + \beta + \gamma$: net order of the reaction
- Rate equation: v versus c connections

Integration of the differential equation (analytical or numerical) is needed for comparison

Measurement results: c versus t traces

First order kinetics

- Stoichiometry: A → P (the reverse reaction is negligible)
- Rate equation: $-\frac{d[A]}{dt} = k_1[A]$ or: $\frac{d[P]}{dt} = k_1[A]$

• Integrated form: $[A] = [A]_0 e^{-k_1 t}$; $[P] = [A]_0 \left(\frac{k_{\text{smal}}}{1 - e^{-k_1 t}} \right)$

linearized:
$$\ln \frac{[A]}{[A]_0} = -k_1 t$$

- Half-life: $t_{1/2} = \ln 2/k_1$
 - t_{1/2} is independent of the initial concentration in first order reactions.

Second order kinetics I.

Second order kinetics I.

Concentration vs time data for first and second order reactions

Second order kinetics II.

- Stoichiometry: A + B → P (the reverse reaction is negligible)
- Rate equation: $-\frac{d[A]}{dt} = k_2[A][B]$ or: $\frac{d[P]}{dt} = k_2[A][B]$ Integrated form: $\frac{1}{[B]_0 [A]_0} \ln\left(\frac{[B]/[B]_0}{[A]/[A]_0}\right) = k_2 t$

Zeroth order kinetics

- Stoichiometry: A → P (the reverse reaction is negligible)
- Rate equation: $-d[A]/dt = k_0$ or $d[P]/dt = k_0$
- Integrated from: $[A] = [A]_0 k_0 t$
 - the rate is independent of the reactant concentration (e.g. surface reactions)

Multiterm rate equations: <u>consecutive</u> first-order reactions

- Stoichiometry: $A \xrightarrow{k_a} B \xrightarrow{k_b} P$
- Classical examples: radioactive decay series $^{239}U \xrightarrow{23,5 \text{ minutes}} ^{239}Np \xrightarrow{2,35 \text{ days}} ^{239}Pu$
- The rate equation can be stated for each component: $-\frac{d[A]}{dt} = k_a[A]$

$$\frac{d[B]}{dt} = k_a[A] - k_b[B]$$

Multiterm rate equations: <u>consecutive</u> first-order reactions

- Integrated form:
 - reactant: exponential decay, $[A] = [A]_0 e^{-k_a t}$

intermediate: maximum,

$$[B] = \frac{k_{a}}{k_{b} - k_{a}} \left(e^{-k_{a}t} - e^{-k_{b}t} \right) [A]_{0}$$

product: S shaped curve (a.k.a. induction period),

$$[P] = \left\{ 1 + \frac{k_{a}e^{-k_{b}t} - k_{b}e^{-k_{a}t}}{k_{b} - k_{a}} \right\} [A]_{0}$$

Multiterm rate equations: parallel first-order reactions

Relatively simple (close to obvious)Stoichiometry:

$$A \xrightarrow{k_{1}} P_{1} \qquad d[P_{1}]/dt = k_{1}[A] \quad [P_{1}] = \frac{k_{1}}{k_{1} + k_{2} + \dots + k_{i}}[A]_{0}(1 - e^{-(k_{1} + k_{2} + \dots + k_{i})t})$$

$$A \xrightarrow{k_{2}} P_{2} \qquad d[P_{2}]/dt = k_{2}[A] \quad [P_{2}] = \frac{k_{2}}{k_{1} + k_{2} + \dots + k_{i}}[A]_{0}(1 - e^{-(k_{1} + k_{2} + \dots + k_{i})t})$$

 $A \xrightarrow{k_{i}} P_{i} \quad d[P_{i}]/dt = k_{i}[A]$ -d[A]/dt = $(k_{1} + k_{2} + ... + k_{i})[A] \quad [A] = [A]_{0}e^{-(k_{1} + k_{2} + ... + k_{i})t}$

 Integration gives exponential (first order) formulas.

Multiterm rate equations: <u>reversible</u> first-order reactions

Reversible first order reaction:

- Stoichiometry: A ⇒ B
- Rate equation:

 $d[A]/dt = -k_1[A] + k_{-1}[B]$

- Integration: [A] = $\frac{k_{-1} + k_1 e^{-(k_1 + k_{-1})t}}{k_1 + k_{-1}}$ [A]_{0 0.4}
- These concentration time traces are exponential.

Multiterm rate equations: reversible 2nd-order reactions

Reversible second order reaction:

- Stoichiometry: A + B \rightleftharpoons C + D
- Rate equation:
 - $d[A]/dt = -k_2[A][B] + k_{-2}[C][D]$
- Integration: ...
- Message: in equilibrium d[A]/dt = 0, so the \rightleftharpoons rates are identical: $k_2[A][B] = k_{-2}[C][D]$.

Therefore:
$$\frac{k_2}{k_{-2}} = \frac{[C][D]}{[A][B]} = K_2$$

- Rate equation: $v = k[A]^{\alpha}[B]^{\beta}[C]^{\gamma}$
- Determination of all orders of reaction (α , β , γ , ...) Summing the individual orders gives the **net order of reaction**.
- 2. Calculation of rate constant k

Rate equation: $v = k[A]^{\alpha}[B]^{\beta}[C]^{\gamma}$

- Determination of all orders of reaction (α , β , γ , ...)
 - A. "trial-and-error" based on individual c t traces. Plot the c t pairs of points:
 - if first order: $\ln c t$ (semilogarithmic formula)
 - if second order: 1/c t (reciprocal formula) gives a straight line.
 - Simple first and second order are common cases, but by no means exclusive, a "more certain" method is needed.

Rate equation: $v = k[A]^{\alpha}[B]^{\beta}[C]^{\gamma}$

- Determination of all orders of reaction (α , β , γ , ...)
 - B. van't Hoff method (initial rate method):
 - Logarithm of the rate equation with initial values: $lgv_0 = lgk + \alpha lg[A]_0 + \beta lg[B]_0 + \gamma lg[C]_0$
 - Set [B]₀ and [C]₀ so that [B] = constant and
 [C] = constant (pseudo-zeroth order).
 - Rate v_0 is measured at different [A]₀, then the data pairs $\lg v_0 \lg[A]_0$ are plotted.
 - The slope of the straight line is the α (order of reaction with respect to reactant A). ¹⁹

- Rate equation: $v = k[A]^{\alpha}[B]^{\beta}[C]^{\gamma}$
- Determination of all orders of reaction (α , β , γ , ...)
 - B. van't Hoff method (initial rate method):

 Then change [B]₀ and keep [A]₀ and [C]₀ constant, so order β with respect to B is obtained.

Rate equation: $v = k[A]^{\alpha}[B]^{\beta}[C]^{\gamma}$

- **Determination of all orders of reaction (** α **,** β **,** γ **, ...)** The individual orders of reactions may be:
 - small positive integers (1, 2, 3)
 - no explanation needed, a natural case
 - small negative integers (-1, -2, -3)
 - e.g. interpretation by rapid pre-equilibrium (deprotonation)
 - small positive/negative fractional numbers (1/2, 3/2)
 - e.g. dimer dissociation as a pre-equilibrium
 - e.g. chain reactions
 - O (this can be directly seen from the data, no plot needed)
 - e.g. certain surface reactions, drug intake processes

21

Rate equation: $v = k[A]^{\alpha}[B]^{\beta}[C]^{\gamma}$

- **Determination of all orders of reaction (** α , β , γ , ...)
- 2. Calculation of the rate constant k
- Numerical calculations from measured v rates (mol dm⁻³ s⁻¹) and the known form of the rate equation.
- dimension of k: $[k_1] = s^{-1}$, $[k_2] = mol^{-1} dm^3 s^{-1}$ etc.
- Equilibrium constant K is the ratio of the rate constants k₊ and k₋ both numerically and dimensionally:

$$K = k_+ / k_-$$

REACTION KINETICS AND REACTION MECHANISMS

Different levels of dealing with reaction rates:

I. REACTION KINETICS

macroscopic level – mathematical description

II. REACTION MECHANISMS molecular level-interpretation

III. THEORIES OF REACTION RATES Arrhenius equation, collision and activated complex theories

II. REACTION MECHANISMS

- Mechanism and its role: elementary reaction that interpret...
 - a) the net stoichiometry of the process (observed intermediates if there are any) and
 - b) The kinetic observations (the rate equation).
- rate equation ↔ mechanism

Concept and properties of elementary reactions:

- Elementary reaction: consumption of a few reactant molecules, the dissociation and formation of maximum 1–2 bonds through a single activated complex.
- Elementary reactions are reversible!
- types of elementary reactions and their rate equations:
 unimolecular
 - $A \rightarrow product(s)$
 - bimolecular (most common)
 - $A + B \rightarrow product(s)$ or $2A \rightarrow product(s)$
- Order of reaction and molecularity are the same for elementary reactions!

Law of kinetic mass action:

- For elementary reactions, the rate equation can be deduced from the stoichiometry. For example:
 - $A \rightarrow \text{product(s)}$
 - $A \rightleftharpoons B$ C
 - $A + B \rightarrow \text{product(s)}$
 - $2A \rightarrow \text{product(s)}$

- $d[A]/dt = k_1[A]$
- $d[A]/dt = k_1[A] k_1[B]$
- $d[A]/dt = k_2[A][B]$
- $d[A]/dt = k_2[A]^2$
- An elementary reaction is always reversible, but the rate of the reverse reaction is often negligible.

- Enzymes: efficient, specific biocatalysts
- Stoichiometry: $S \xrightarrow{E} P$
- Kinetics: initial rates are measured (because...):

- Two more observations:
 - Maximum in the *T*-dependence. Arrhenius equation and denaturing.
 37°C Enzymes denaturing

The pH-dependence also often shows a maximum. Amphoteric amino acids!

Description of v–[S] curves: $v = \frac{a}{h}$ or $v = \frac{a[S]}{h+[S]}$

ave chen aturates s he produc

y_{max}/2 hold Maud Lec

e in [S] n this case

- The equation is interpreted by the following mechanism:
 - $E + S \rightleftharpoons ES$

 $ES \rightarrow P + E$

- k_1 and k_1
- k_{2} , rate determining step

- A common evaluation method:
 - Experimental rate equation Lineweaver–Burk plot

- It is quite instructive t compare the formation of HBr and other HX. The same stoichiometry, but ...
 - HBr formation:
 - measurements: Bodenstein, Lind (1907)
 - explanation: Christiansen, Herzfeld, Polányi (1919)
 - a classic example used in reaction kinetics
 - Stoichiometry: $H_2 + Br_2 \rightleftharpoons 2 HBr$
 - Kinetics: $v = \frac{k[H_2][Br_2]^{3/2}}{[Br_2] + k'[HBr]} = \frac{k[H_2][Br_2]^{1/2}}{1 + \frac{k'[HBr]}{[Br_2]}}$
 - A suitable mechanism was necessary.
 Finding it took a decade!

Mechanism: five (irreversible) elementary steps.

 $Br_{2} \rightarrow 2 Br_{1}$ $Br_{1} + H_{2} \rightarrow HBr + H_{2}$ $H_{1} + Br_{2} \rightarrow HBr + Br_{2}$ $H_{1} + HBr \rightarrow Br_{1} + H_{2}$ $2 Br_{1} + M \rightarrow Br_{2} + M$

 $v_a = k_a[Br_2]$ $v_b = k_b[Br \cdot][H_2]$ $v_c = k_c[H \cdot][Br_2]$ $v_d = k_d[H \cdot][HBr]$ $v_e = k_e[Br \cdot]^2$

Mechanism: five (irreversible) elementary steps.

 $Br_2 \rightarrow 2 Br_2$ $v_a = k_a [Br_2]$ $v_b = k_b [Br \cdot][H_2]$ $Br \cdot + H_{2} \rightarrow HBr + H \cdot$ $H \cdot + Br_{2} \rightarrow HBr + Br \cdot$ $v_c = k_c [\text{H} \cdot] [\text{Br}_2]$ $H \cdot + HBr \rightarrow Br \cdot + H_{2}$ $v_d = k_d [\text{H} \cdot] [\text{HBr}]$ $2 \text{ Br} + \text{M} \rightarrow \text{Br}_{2} + \text{M}$ $v_{\rho} = k_{\rho} [\text{Br} \cdot]^2$ Notice: reversible $Br_{2} \rightleftharpoons 2 Br_{2}$ reversible $Br + H_{\gamma} \rightleftharpoons HBr + H_{\gamma}$ $H_{\cdot} + Br_{2} \rightarrow HBr + Br_{\cdot}$ irreversible

 A typical chain reaction: a reaction of a reactive intermediate produces another reactive intermediate and these form a chain (cycle).

HBr

Visualization of the mechanism for the chain reaction:

Chain length =

HI

- Stoichiometry: $H_2 + I_2 \rightleftharpoons 2 HI$
- Kinetics:

 $v = k_2[H_2][I_2] - k_2[HI]^2$

- Mechanism:
 - A. if $H_2 + I_2 \rightleftharpoons 2HI$ is an elementary reaction, kinetic mass action gives: $v = k_2[H_2][I_2] - k_2[HI]^2$
 - this agrees with the experimental rate equation.
 - Note: the $H_2 + I_2 \rightarrow 2$ HI reaction played an important role in setting up the collision theory.

Catalysis

Properties of catalytic phenomena:

- a catalyst accelerates a reaction by reacting and then re-producing (no apparent consumption),
- a catalyst is often written on both sides of the stoichiometric equation, but its order of reaction is positive,
- a catalyst opens a new path for the reaction: the rate of this catalyzed process is typically larger then the rate of the reaction without the catalyst,
- a catalyst never influences the position of the equilibrium (thermodynamic neutrality), it accelerates both the forward and reverse reactions.

Catalysis

Catalysis

Stoichiometric scheme: $A + \{B\} + K \rightarrow P + Q + K$

