Multiparticle systems

« Previous part: principles of qt n hanics
applied for systems with a single particle

« Atoms and molceules: simultaneous presence of several particles

+In a system oprarticIes, these particles do not have individual states,
the system can only be characterized with a joint wave function:
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spin coordinates

or P(1,2,...,N,0)

Multiparticle systems

« The probability that the individual particles will be found in the region
with volume dV = dVl dV2 dVN around the coordinates:
¥*(1,2,....N)¥P(1,2,....N,ndV

« The state equation (Schrodinger equation):
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Laplace operator: derivation with
respect to spatial coordinate
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the total interaction
energy of particles

Multiparticle systems

« Solving the Schrédinger equation of multiparticle systems is often
very complicated

« Approximation methods are necessary J.Y/O*[—Iy/odV
e.g. principle of variation I a—
* The appropriate Hamilton operator: J yjo Y/OdV
N h2 P
H=-YT"A +v E:jsfnyde
A 2 [ war

« The stationary Schrédinger equation:
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The structure of atoms

« Elementary particles in atoms:

proton neutron electron

mass (kg) | 1.67262-10-27 1.67493-1077 | 9.10939-10-3!

charge (C) |1.60218:10-°(e) |0 -1.60218-10-"° (-€)

Mass number Charge

Z=Atomic number symb°|

» Size of the nucleus: 10-'® m (nuclear physics, nuclear chemistry)
« Electron cloud (quantum mechanics:
— the nucleus is considered to be a point charge
— the nucleus is practically stationary relative to the
center of mass of the atom)

Hydrogen-like particles

« nucleus with Ze charge

. + j2+ 3+ 91+
eg:H, He?, Li**, Be®, U - a single electron

« The interaction between the nucleus and the electron is given by the
Coulomb potential: 2
1 Ze

V(ry=-

4re, r
vacuum permittivity
* The stationary Schrédinger equation (8.85419-10-12J-'C2m™1)
for the movement of the electron: ’
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Hydrogen-like particles
n=123,... 7t
1=0,1,2,...,(n-1)
m=—I,—(I-1),...,0,...,(=1),/

F: radius
@: azimuth
o: polar angle

* The stationary Schrédinger equation
for the movement of the electron:
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« In a spherical coordinate system:
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Hydrogen-like particles
n=123,...
1=0,1,2,...,(n-1)
m=—I,—(I-1),...,0,...,(=1),/
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Hydrogen-like particles
n=1,23,...
1=0,1,2,...,(n-1)
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Hydrogen-like particles
n=1,23,...
1=0,1,2,...,(n-1)
m=—1I,—(I-1),...,0,...,(-1),/
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Hydrogen-like particles
n=1,.23,... o
1=0,1,2,...,(n-1)
m=—1I,—(I-1),...,0,...,(-1),/

F: radius
®@: azimuth
o: polar angle
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associated Legendre polynomial
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same as the wave function of Y — N

a particle moving on the “ /,m — ' l,m" [
surface of a sphere \_ angular wave function /
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Hydrogen-like particles
n=1.23,... 2t
1=0,12,...(n-1)
m=—1,~(I-1),...,0,...,(-1),]

F: radius
@: azimuth
0: polar angle
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normalization
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a particle moving on the
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Hydrogen-like particles
« Conventions for designating Yln wave functions:

n= 1,2,3,4,. .. the number itself

=023 [ > spdf

m= *l, *(l*l),. . .,0, .. .,(l*l),l subscript (if needed)
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Hydrogen-like particles
< Radial wave function of hydrogen-like particles:

Rn,l (r) = _Nn,lrl exp - Zr Lil:}l &

radial wave function na, na,

orbital radial wave function

1s  |Ro=2Z/a)* exp(~Zr/ay)

25 |R, =[(Z/ao)%(272r/ao)exp(—Zr/2aD):|/2%
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3p RSJ=[4(Z/a0)%(62r/a07(Zr/ao)z)exp(fzr/3ao)}/(81-6}/1)
= [4(2 /a,Y(Zr ! a,) exp(—Zr/3a0)] /(81-3%)

Hydrogen-like particles

orbital angular wave function

s Yo =(1/47)"*
D, Y= (3/4x) cos®

To obtain real atomic
orbitals the real
combinations of complex

Do | Yo =(6/87Y sin@cos@ | YimTunctions, ie.

” o . Yl,cosm(l) and Yl,sinm(D)
Dy Y gno = (6/87)"*sin@sin ® are used:
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dy Y, oo = =(30/87)” cos©sin Osind

d o o] Ying =(30/327)% sin’ @cos 20

d, | Y, =(30/322)"sin’ ©sin 20

Hydrogen-like particles

orbital angular wave function

s Y, =(1/47)" o
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Hydrogen-like particles

orbital angular wave function

s Yo,o = (1/47’)% For a single energy value,
) there are
P: Y,y =(3/47)* cos® el
p S+ =n’
P« Y, o0 = (6/87)" sin®cos @ —
Dy Y, uo = (6/87) sin©@sin ® wave functions

(degree of degeneration)
d, Y,,=(5/16z)(3cos’ @ 1)
d

Y, oo = (30/87)% cos Osin @ cos ®

Y, o = =(30/87)% cos Osin Osin d

dy
ds | Yo =(30/322)" sin’ @cos 20>
d., | Y. =(30/327)" sin’ Osin 200

For a single energy value,
there are

n—1
> @i+y=n
1=0

wave functions
(degree of degeneration)

Hydrogen-like particles
« The radial density function is suitable for characterizing the electron:
B,(r)=r*|R,, (]

(The probability that the electron with quantum numbers n,l is found

within the spherical shell of radius 7 and thickness dr)
« The probability of finding the electron in the sphere with radius Ris:
R

w= [ B, (r)dr

For the 15 orbital:
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Hydrogen-like particles
*The rﬁdial density function is suitable for characterizing the electron:

Rn,l (r) ?

neit-0
. B:,/ (r)= r

16 n=2,ta1
A

Radial density function ,

Hydrogen-like particles
« The radial density function is suitable for characterizing the electron:

P, (r)=r*|R, ()|

and the average distance from the nucleus:
o0

vrorey

Hydrogen-like particles

Spectra of hydrogen-like particles:
* The photon with C Speed emitted during the #1,—>71| (where 71, > ny)

electron transition has an energy that is identical to the energy difference
between the initial and final states.

*The wavelength of the photon: 4s 4p 4d 4f

1 ~ 1 1 3s 3p 3d
A XA\ on
2s 2p
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Zz 4  Rydberg constant
: =§‘2—hf =1.09737-10°cm™"
€y
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Hydrogen-like particles

Spectra of hydrogen-like particles:
* The photon with C Speed emitted during the 71,—# (where 71, > ny)
electron transition has an energy that is identical to the energy difference

between the initial and final states. (" Lyman Bamer Paschen Brackett Pfand
8
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Hydrogen-like particles

Spectra of hydrogen-like particles:
* The photon with C Speed emitted during the 71,—71| (where 71, > ny)

electron transition has an energy that is identical to the energy difference
between the initial and final states. n Lyman Balmer Faschen Brackett Prund )

[
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*The wavelength of the photon:

P

M1
l =R, Lz_iz : 45@ 2 nm
A n n, ‘ 656.3 nm

Hydrogen-like particles

* The absolute value of the angular momentum arising from the movement
of the electron around the nucleus (orbital angular momentum):

L =i +Dn
the component of the angular momentum in direction Z:
L =mh
« Experience shows that electrons have angular momentum even if they

do not move around a nucleus (intrinsic angular momentum or spin), this
is an inherent property of particles.

The total wave function of
|S| = S(S + l)h and Sz = msh the electron (including
spin) :
where § = L (spin quantum number)
2 rmt = i@
m, = i% (spin states) tamyy "

¥ =Y
a andﬂ (spin functions) n,l,m,~% nJ,mﬂ




Hydrogen-like particles

For a single energy value,
there are

2y @l+1)=2n"
1=0
wave functions

(degree of degeneration)

The total wave function of
|S| = S(S +1)h and Sz = msh the electron (including

spin) :
where § = 1 (spin quantum number)
: tmt = i@
m, = i% (spin states) mlm,y ot
i unct ¥,ims =i
o andﬂ (spin functions) n,l,mﬁg n,t,m

Hydrogen-like particles

« It is not only electrons that have spin
- Fermions have half-integer spins,
Bosons have integer spins.

electron
proton
neutron
photon
g a-particle
Satjendra Nath Bose Enrico Fermi
(1894-1974) (1901-1954)

m, =—5,—(s—=1),...,(s —1),s (spinstates)

Multielectron particles

« The stationary Schrédinger equation of the system:

h2 N e2 N N 1
—— DA+ Z +ZZ— ¥ =EY
i=1 j=1 1

2u'3 dre,| 3
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<j \
distance between
two electrons

distance between
the electron and
the nucleus

Z: atomic number

N: number of electrons

« Solution is only possible by approximation.

« A rather complicated variational probe function (i.e. one with many
parameters) is needed to obtain good approximations in simple systems.

« The independent particle approach make it possible to handle the
electron structure in a way easy to visualize.

Multielectron particles

« Assume that the interaction with the /N electrons with each other is
negligible.
« Electrons are individually characterized by Nindependent Schrédinger
equations.
« E.g. for electron I then:
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(A suitable number of electrons placed on the orbitals of a hydrogen-like atom.)
« The wave function of the electron characterized by quantum numbers

(n:l:mrms): T = ¢n,m,lo-m

/' n,l,m,my

electron orbital . .
spin function

(spin orbital) atomic orbital

Multielectron particles
The simplest approach: independent particles

« It is impossible to have two electrons with the same four quantum
numbers within a single atom.

n=1.234,. KLMN,... | shel
[=0,1,2,3,... spdf.... Subshell

Electron configuration: shows how many electron are on

individual subshells (e.g.: Ne: 1S22S22p6)
« The total wave function of the atom is the product of the electron wave

functions: /(12 N) =¥ ()%, (2).. ¥, (N)
« The total energy is the sum of the individual energies:

E=E+E +.+E,

« Energy minimum: the ground state is the one with the lowest energy.

< An atomic orbital can host only 2 electrons (Pauli’s exclusion principle).

Multielectron particles
Approximation using independent particles:
Hartree’s SCF (Self-Consistent Field) method

« The multiparticle Schrédinger equation is separated into individual
particles, but the interaction between the particles is considered.

(the same as in the
'1/(17 2) RS N) = le (I)Tz (2)501\1 (N) previous case)

/5 e’ VA . .
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H "o )l
potential energy arising form the interaction of N
electron I with all other electrons

2
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Multielectron particles

Approximation using independent particles:
Hartree’s SCF (Self-Consistent Field) method

« Average charge density arising from the movement of electronj:
N2
-e| 70|
« Divide this charge cloud into small part with volume drv.
* In such a part, the point charge is -€ | WJ(]) | 2d Vj
« For electron i, this contributes 62 | Y//(/) | 2/(47[80rl~j)
to the electrostatic potential.

« The total potential energy arising from the charge of electronj is
calculated as the suml/integral of this small point charges.

¢ & 7Ol -
VI(I:)ZF&O;IJTdVI where | = 1,2,...,N
J#i

Multielectron particles

Approximation using independent particles:
Hartree’s SCF (Self-Consistent Field) method
The Schrodinger equation is often solved jteratively:

1. Initially, the wave functions lpl, ey WN hare approximated by the
orbitals of hydrogen-like atoms,

2. the potentials Vl»(l"l») are calculated and the Scrodinger equation is
solved.

« Step 2 is repeated until one iteration step does not change the 9’1,

ey WN functions any more.

¥(1,2,..,N) = % ()% (2)..7, (N)
E= j 7HY AV

Multielectron particles

Approximation using independent particles:
Hartree—Fock SCF method

« The total wave function of an atom is given in the form of a determinant,
« tries to account for the equivalence of electrons.

« The wave function of particles with half-integer spin can only be
antisymmetric (this is Pauli’s exclusion principle in a general form):

¥(1,2,..,N)=-¥(2,1,...N)
Slater determinants: '{/1(1) %(1) cee Y/N (1)
Y2 Y2 - ¥Q2
v(1,2,..,N)=c ‘:( ) 2:( ) N:( )

HN) F(N) - Py(N)
« The wave function of a closed shell system (noble gas atom, alkali metal
ions) consist of a single Slater determinant.

Multielectron particles

Approximation using independent particles:
Hartree—Fock SCF method
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« Calculations can be carried
out for every atom and ion,

-« the relative error of the total
energy is about 1%,

ycTur)

« this is in the order of the
. energy changes of the
- valence shell,

. — ionization and excitation
- energies obtained by this
method are not very accurate.

-100

300




